Hyperspectral and Multispectral Image Fusion Using Non-Convex Relaxation Low Rank and Total Variation Regularization

Yue Yuan, Qi Wang, Xuelong Li
{"title":"Hyperspectral and Multispectral Image Fusion Using Non-Convex Relaxation Low Rank and Total Variation Regularization","authors":"Yue Yuan, Qi Wang, Xuelong Li","doi":"10.1109/IGARSS39084.2020.9323227","DOIUrl":null,"url":null,"abstract":"Hyperspectral (HS) and multispectral (MS) image fusion is an important task to construct an HS image with high spatial and spectral resolutions. In this paper, we present a novel HS and MS fusion method using non-convex low rank tensor approximation and total variation regularization. In specific, the Laplace based low-rank model is formed to exploit spatial-spectral correlation and nonlocal similarity of the HS image, and the second-order total variation is used to describe the local smoothness structure in the spatial domain and adjacent bands. Also, an effective optimization algorithm is designed for the proposed model. In the experiments, we demonstrate the superiority of the proposed method compared to several state-of-the-art approaches.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Hyperspectral (HS) and multispectral (MS) image fusion is an important task to construct an HS image with high spatial and spectral resolutions. In this paper, we present a novel HS and MS fusion method using non-convex low rank tensor approximation and total variation regularization. In specific, the Laplace based low-rank model is formed to exploit spatial-spectral correlation and nonlocal similarity of the HS image, and the second-order total variation is used to describe the local smoothness structure in the spatial domain and adjacent bands. Also, an effective optimization algorithm is designed for the proposed model. In the experiments, we demonstrate the superiority of the proposed method compared to several state-of-the-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非凸松弛、低秩和全变分正则化的高光谱和多光谱图像融合
高光谱(HS)和多光谱(MS)图像融合是构建高空间分辨率和高光谱分辨率高光谱图像的重要任务。本文提出了一种基于非凸低秩张量近似和全变分正则化的HS与MS融合新方法。具体而言,利用HS图像的空间-光谱相关性和非局部相似性,建立基于拉普拉斯的低秩模型,利用二阶总变分描述空间域和相邻波段的局部平滑结构。并针对所提出的模型设计了一种有效的优化算法。在实验中,我们证明了与几种最先进的方法相比,所提出的方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retrieval of Solar-Induced Chlorophyll Fluorescence at Red Spectral Peak with Tropomi on Sentinel-5 Precursor Mapping the Rate of Carbon Mineralization in Oman Ophiolites Using Sentinel-1 InSAR Time Series Characterization of Biomass Burning Aerosols During the 2019 Fire Event: Singapore and Kuching Cities Exploitation of Earth Observations: OGC Contributions to GRSS Earth Science Informatics A Pseudospectral Time-Domain Simulator for Large-Scale Half-Space Electromagnetic Scattering and Radar Sounding Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1