QASMBench: A Low-Level Quantum Benchmark Suite for NISQ Evaluation and Simulation

Ang Li, S. Stein, S. Krishnamoorthy, James Ang
{"title":"QASMBench: A Low-Level Quantum Benchmark Suite for NISQ Evaluation and Simulation","authors":"Ang Li, S. Stein, S. Krishnamoorthy, James Ang","doi":"10.1145/3550488","DOIUrl":null,"url":null,"abstract":"The rapid development of quantum computing (QC) in the NISQ era urgently demands a low-level benchmark suite and insightful evaluation metrics for characterizing the properties of prototype NISQ devices, the efficiency of QC programming compilers, schedulers and assemblers, and the capability of quantum system simulators in a classical computer. In this work, we fill this gap by proposing a low-level, easy-to-use benchmark suite called QASMBench based on the OpenQASM assembly representation. It consolidates commonly used quantum routines and kernels from a variety of domains including chemistry, simulation, linear algebra, searching, optimization, arithmetic, machine learning, fault tolerance, cryptography, and so on, trading-off between generality and usability. To analyze these kernels in terms of NISQ device execution, in addition to circuit width and depth, we propose four circuit metrics including gate density, retention lifespan, measurement density, and entanglement variance, to extract more insights about the execution efficiency, the susceptibility to NISQ error, and the potential gain from machine-specific optimizations. Applications in QASMBench can be launched and verified on several NISQ platforms, including IBM-Q, Rigetti, IonQ and Quantinuum. For evaluation, we measure the execution fidelity of a subset of QASMBench applications on 12 IBM-Q machines through density matrix state tomography, comprising 25K circuit evaluations. We also compare the fidelity of executions among the IBM-Q machines, the IonQ QPU and the Rigetti Aspen M-1 system. QASMBench is released at: http://github.com/pnnl/QASMBench.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3550488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

The rapid development of quantum computing (QC) in the NISQ era urgently demands a low-level benchmark suite and insightful evaluation metrics for characterizing the properties of prototype NISQ devices, the efficiency of QC programming compilers, schedulers and assemblers, and the capability of quantum system simulators in a classical computer. In this work, we fill this gap by proposing a low-level, easy-to-use benchmark suite called QASMBench based on the OpenQASM assembly representation. It consolidates commonly used quantum routines and kernels from a variety of domains including chemistry, simulation, linear algebra, searching, optimization, arithmetic, machine learning, fault tolerance, cryptography, and so on, trading-off between generality and usability. To analyze these kernels in terms of NISQ device execution, in addition to circuit width and depth, we propose four circuit metrics including gate density, retention lifespan, measurement density, and entanglement variance, to extract more insights about the execution efficiency, the susceptibility to NISQ error, and the potential gain from machine-specific optimizations. Applications in QASMBench can be launched and verified on several NISQ platforms, including IBM-Q, Rigetti, IonQ and Quantinuum. For evaluation, we measure the execution fidelity of a subset of QASMBench applications on 12 IBM-Q machines through density matrix state tomography, comprising 25K circuit evaluations. We also compare the fidelity of executions among the IBM-Q machines, the IonQ QPU and the Rigetti Aspen M-1 system. QASMBench is released at: http://github.com/pnnl/QASMBench.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QASMBench:用于NISQ评估和模拟的低级量子基准套件
在NISQ时代,量子计算(QC)的快速发展迫切需要一个低级基准套件和有洞察力的评估指标来表征原型NISQ设备的特性,QC编程编译器、调度程序和汇编程序的效率,以及经典计算机中量子系统模拟器的能力。在这项工作中,我们提出了一个低级的,易于使用的基准套件,称为QASMBench,基于OpenQASM汇编表示来填补这一空白。它整合了来自各种领域的常用量子例程和内核,包括化学、模拟、线性代数、搜索、优化、算术、机器学习、容错、密码学等,在通用性和可用性之间进行了权衡。为了从NISQ器件执行的角度分析这些内核,除了电路宽度和深度之外,我们还提出了四个电路指标,包括栅极密度、保留寿命、测量密度和纠缠方差,以获取有关执行效率、对NISQ错误的敏感性以及特定机器优化的潜在收益的更多见解。QASMBench的应用程序可以在多个NISQ平台上启动和验证,包括IBM-Q、Rigetti、IonQ和quantum。为了进行评估,我们通过密度矩阵状态层析测量了12台IBM-Q机器上QASMBench应用程序子集的执行保真度,其中包括25K电路评估。我们还比较了IBM-Q机器、IonQ QPU和Rigetti Aspen M-1系统的执行保真度。QASMBench发布于:http://github.com/pnnl/QASMBench。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting the Mapping of Quantum Circuits: Entering the Multi-Core Era An optimal linear-combination-of-unitaries-based quantum linear system solver Efficient Syndrome Decoder for Heavy Hexagonal QECC via Machine Learning Improving the Efficiency of Quantum Circuits for Information Set Decoding Quantum Bilinear Interpolation Algorithms Based on Geometric Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1