CapitalVX: A Machine Learning Model for Startup Selection and Exit Prediction

Greg Ross, Daniel Sciro, Sanjiv Ranjan Das, Hussain Raza
{"title":"CapitalVX: A Machine Learning Model for Startup Selection and Exit Prediction","authors":"Greg Ross, Daniel Sciro, Sanjiv Ranjan Das, Hussain Raza","doi":"10.2139/ssrn.3684185","DOIUrl":null,"url":null,"abstract":"Using a big data set of venture capital financing and related startup firms from Crunchbase, this paper develops a machine-learning model called CapitalVX (for “Capital Venture eXchange”) to predict the outcomes for startups, i.e., whether they will exit successfully through an IPO or acquisition, or fail. Using a large feature set, the out-of-sample accuracy of predictions on startup outcomes and follow-on funding is 88%. This research suggests that VC/PE firms may be able to benefit from using machine learning to screen potential investments using publicly available information, diverting this time instead into mentoring and monitoring the investments they make.","PeriodicalId":409712,"journal":{"name":"ERPN: Entrepreneurs (Finance) (Topic)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERPN: Entrepreneurs (Finance) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3684185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Using a big data set of venture capital financing and related startup firms from Crunchbase, this paper develops a machine-learning model called CapitalVX (for “Capital Venture eXchange”) to predict the outcomes for startups, i.e., whether they will exit successfully through an IPO or acquisition, or fail. Using a large feature set, the out-of-sample accuracy of predictions on startup outcomes and follow-on funding is 88%. This research suggests that VC/PE firms may be able to benefit from using machine learning to screen potential investments using publicly available information, diverting this time instead into mentoring and monitoring the investments they make.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CapitalVX:一个用于创业公司选择和退出预测的机器学习模型
本文使用来自Crunchbase的风险投资融资和相关创业公司的大数据集,开发了一个名为CapitalVX(“资本风险交易”)的机器学习模型来预测创业公司的结果,即他们是否会通过IPO或收购成功退出,还是失败。使用一个大的特征集,对创业结果和后续资金的预测的样本外准确性为88%。这项研究表明,VC/PE公司可能会受益于使用机器学习来利用公开信息筛选潜在的投资,而不是将时间转移到指导和监控他们所做的投资上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
REPUTATION AS CAPITAL – How DAOs Upgrade Finance The Start-up Decision Under Default Risk ICOs: A New Eldorado for Investors and a Revolution in Startup Financing? A Survey Enfranchising the crowd: Nominee account equity crowdfunding AFI Innovative Regulatory Approaches Toolkit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1