Greg Ross, Daniel Sciro, Sanjiv Ranjan Das, Hussain Raza
{"title":"CapitalVX: A Machine Learning Model for Startup Selection and Exit Prediction","authors":"Greg Ross, Daniel Sciro, Sanjiv Ranjan Das, Hussain Raza","doi":"10.2139/ssrn.3684185","DOIUrl":null,"url":null,"abstract":"Using a big data set of venture capital financing and related startup firms from Crunchbase, this paper develops a machine-learning model called CapitalVX (for “Capital Venture eXchange”) to predict the outcomes for startups, i.e., whether they will exit successfully through an IPO or acquisition, or fail. Using a large feature set, the out-of-sample accuracy of predictions on startup outcomes and follow-on funding is 88%. This research suggests that VC/PE firms may be able to benefit from using machine learning to screen potential investments using publicly available information, diverting this time instead into mentoring and monitoring the investments they make.","PeriodicalId":409712,"journal":{"name":"ERPN: Entrepreneurs (Finance) (Topic)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERPN: Entrepreneurs (Finance) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3684185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Using a big data set of venture capital financing and related startup firms from Crunchbase, this paper develops a machine-learning model called CapitalVX (for “Capital Venture eXchange”) to predict the outcomes for startups, i.e., whether they will exit successfully through an IPO or acquisition, or fail. Using a large feature set, the out-of-sample accuracy of predictions on startup outcomes and follow-on funding is 88%. This research suggests that VC/PE firms may be able to benefit from using machine learning to screen potential investments using publicly available information, diverting this time instead into mentoring and monitoring the investments they make.