FACE RECOGNITION MENGGUNAKAN METODE HAAR CASCADE CLASSIFIER DAN LOCAL BINARY PATTERN HISTOGRAM

Nurul Mega Saraswati Saraswati, Rito Cipta Sigitta Hariyono, D. Chandra
{"title":"FACE RECOGNITION MENGGUNAKAN METODE HAAR CASCADE CLASSIFIER DAN LOCAL BINARY PATTERN HISTOGRAM","authors":"Nurul Mega Saraswati Saraswati, Rito Cipta Sigitta Hariyono, D. Chandra","doi":"10.59562/metrik.v20i3.50491","DOIUrl":null,"url":null,"abstract":"Increasing threats to data security is a consequence of technological advances that continue to develop, especially with the existence of technology that allows data access remotely. It is important to always maintain data security and take preventive measures to prevent data theft. The author proposes the use of facial recognition biometric technology. Face Recognition is one of several biometric technologies that can be used for identity verification systems. The data used amounted to 5 classes, classes with each class having 250 facial images, the total data used amounted to 1250 facial images, consisting of 1000 training data (train) and 250 test data ( tests). The shooting process is done automatically, the system automatically takes 250 faces per class. The next stage is feature extraction using the Local Binary Patterns Histograms (LBPH) method. Furthermore, the system will recognize the detected faces with those in the dataset. The use of the Haar Cascade Classifier and Local Binary Pattern Histogram (LBPH) methods to detect faces using 250 test data obtains an accuracy value of 92%. Testing in real time was carried out 75 times with a distance of 30 cm, 50 cm and 100 cm. The use of the Haar Cascade Classifier and Local Binary Pattern Histogram (LBPH) methods to detect faces in real time obtains an accuracy of 90%.","PeriodicalId":129780,"journal":{"name":"Jurnal Media Elektrik","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Media Elektrik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59562/metrik.v20i3.50491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing threats to data security is a consequence of technological advances that continue to develop, especially with the existence of technology that allows data access remotely. It is important to always maintain data security and take preventive measures to prevent data theft. The author proposes the use of facial recognition biometric technology. Face Recognition is one of several biometric technologies that can be used for identity verification systems. The data used amounted to 5 classes, classes with each class having 250 facial images, the total data used amounted to 1250 facial images, consisting of 1000 training data (train) and 250 test data ( tests). The shooting process is done automatically, the system automatically takes 250 faces per class. The next stage is feature extraction using the Local Binary Patterns Histograms (LBPH) method. Furthermore, the system will recognize the detected faces with those in the dataset. The use of the Haar Cascade Classifier and Local Binary Pattern Histogram (LBPH) methods to detect faces using 250 test data obtains an accuracy value of 92%. Testing in real time was carried out 75 times with a distance of 30 cm, 50 cm and 100 cm. The use of the Haar Cascade Classifier and Local Binary Pattern Histogram (LBPH) methods to detect faces in real time obtains an accuracy of 90%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脸识别蒙古那坎方法有级联分类器丹局部二值模式直方图
随着技术的不断发展,特别是随着允许远程访问数据的技术的存在,对数据安全的威胁越来越大。始终维护数据安全并采取预防措施防止数据被盗是非常重要的。作者提出使用人脸识别生物识别技术。人脸识别是可用于身份验证系统的几种生物识别技术之一。使用的数据为5个类,每个类有250张人脸图像,使用的数据总数为1250张人脸图像,包括1000张训练数据(train)和250张测试数据(tests)。拍摄过程是自动完成的,系统每班自动拍摄250张脸。下一步是使用局部二值模式直方图(LBPH)方法进行特征提取。此外,系统将检测到的人脸与数据集中的人脸进行识别。使用Haar级联分类器和局部二值模式直方图(LBPH)方法对250个测试数据进行人脸检测,准确率达到92%。实时测试75次,距离分别为30 cm、50 cm、100 cm。利用Haar级联分类器和局部二值模式直方图(LBPH)方法对人脸进行实时检测,准确率达到90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DESIGN AND DEVELOPMENT OF CAMPUS ROOM USE MONITORING APPLICATION BASED ON ANDORID WITH MAGNETIC DOOR LOCK IN THE DEPARTMENT OF INFORMATICS AND COMPUTER ENGINEERING UNM DEVELOPMENT OF A WEB-BASED NEW STUDENT ADMISSION INFORMATION SYSTEM COMMERCE INFORMATION SYSTEM: VERAL VEHICLE RENTAL WEBSITE (VEHICLE RENTAL) WITH AGILE METHOD CNC Plotter Printed Circuit Board SYSTEM DESIGN FOR CALCUALTING THE NUMBER AND DENSITY OF MOTORCYCLES IN PARKING AREA BASED ON BACKGROUND SUBTRACTION METHOD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1