The Analysis of Sewers Inflammable Gas Based on PSO-SVR

Wang Hong-qi, Cheng Xin-wen, Jiang Hua-long
{"title":"The Analysis of Sewers Inflammable Gas Based on PSO-SVR","authors":"Wang Hong-qi, Cheng Xin-wen, Jiang Hua-long","doi":"10.1109/IMCCC.2013.134","DOIUrl":null,"url":null,"abstract":"Due to the non-liner, poor selectivity and cross-sensitivity of the combustible gas in the sewer, an analysis prediction model of the combustible gas in the sewer has been established based on the PSO-SVR machine, the model has introduced a new particle swarm algorithm to support the vector regression machine so that it can optimize the important parameters, realizing the automatic determination of parameters of the SVR machine, and be used for quantitative analysis of combustible gas in the sewer. The simulation results show that the model of the combustible gas in the sewer based on PSO-SVR machine is superior to the compared SVR model and it has better generalization performance and higher prediction accuracy.","PeriodicalId":360796,"journal":{"name":"2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCCC.2013.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the non-liner, poor selectivity and cross-sensitivity of the combustible gas in the sewer, an analysis prediction model of the combustible gas in the sewer has been established based on the PSO-SVR machine, the model has introduced a new particle swarm algorithm to support the vector regression machine so that it can optimize the important parameters, realizing the automatic determination of parameters of the SVR machine, and be used for quantitative analysis of combustible gas in the sewer. The simulation results show that the model of the combustible gas in the sewer based on PSO-SVR machine is superior to the compared SVR model and it has better generalization performance and higher prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PSO-SVR的下水道可燃气体分析
针对下水道可燃气体的非线性、选择性和交叉灵敏度较差的特点,建立了基于PSO-SVR机的下水道可燃气体分析预测模型,该模型引入了新的粒子群算法来支持向量回归机对重要参数进行优化,实现了SVR机参数的自动确定。并用于下水道可燃气体的定量分析。仿真结果表明,基于PSO-SVR机的下水道可燃气体模型优于与之比较的SVR模型,具有更好的泛化性能和更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Cognitive Making Decision Engine Authentication Protocol of RFID System Based on Security Policy Optimal Dispatch Considering the Ability of Active Power Control of Wind Farms Hardware Architecture Design of Image Preprocessing and Phase Calculating Algorithms Based on FPGA An Algorithm for Detecting Lines Based on Primitive Connection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1