{"title":"A Hybrid PID Controller for Flexible Joint Manipulator Based on State Observer and Singular Perturbation Approach","authors":"M. Hong, W. Yao, Zhihao Zhu, Yu Guo","doi":"10.23919/CCC50068.2020.9189446","DOIUrl":null,"url":null,"abstract":"To resolve the problems concerning with vibration suppression and position tracking of flexible joint manipulator system without link velocities information, a hybrid PID controller based on singular perturbation and state observer is presented. In order to estimate the velocities of links, a state observer is adopted instead of extra speed sensors on the link side. Singular perturbation theory is employed to decouple the system into a fast subsystem and a slow subsystem. For the fast subsystem, a PD controller which can damp out the vibration of flexible joints is designed. For the slow subsystem, a hybrid PID controller is proposed to realize desired position tracking. The effectiveness of the proposed control scheme is illustrated by theoretical analysis and simulation results.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9189446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
To resolve the problems concerning with vibration suppression and position tracking of flexible joint manipulator system without link velocities information, a hybrid PID controller based on singular perturbation and state observer is presented. In order to estimate the velocities of links, a state observer is adopted instead of extra speed sensors on the link side. Singular perturbation theory is employed to decouple the system into a fast subsystem and a slow subsystem. For the fast subsystem, a PD controller which can damp out the vibration of flexible joints is designed. For the slow subsystem, a hybrid PID controller is proposed to realize desired position tracking. The effectiveness of the proposed control scheme is illustrated by theoretical analysis and simulation results.