Matthew Bajor, Tanbir Haque, John Wright, P. Kinget
{"title":"Theory and Design of a Direct Space-to-Information Converter for Rapid Detection of Interferer DoA","authors":"Matthew Bajor, Tanbir Haque, John Wright, P. Kinget","doi":"10.1109/VTCFall.2017.8288041","DOIUrl":null,"url":null,"abstract":"A reconfigurable and scalable architecture called the Direct Space-to-Information Converter (DSIC) is presented for rapid and energy-efficient direction-of-arrival (DoA) finding. In conventional delay-and-sum beamformers (CBF), the tradeoff between scan time, resolution and energy consumption is fixed due to the Nyquist sampling theorem. To accurately detect the DoA of an interferer, many scan angles and complex energy intensive calculations are needed. In contrast, the proposed DSIC directly converts an incoming wavefront to spatial information and generates only a few compressed sensing (CS) measurements by forming random projections of the spatial signal consecutively in time. The DoA of the wavefront is then rapidly found from these CS measurements. The energy consumption of the DSIC is 16x lower than the CBF for a realistic scenario where the DoA of only one large interferer needs to be found. Compared to other recently proposed CS DoA finders, the DSIC delivers significant reconfigurability and scalability advantages especially when the number of interferers is unknown.","PeriodicalId":375803,"journal":{"name":"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2017.8288041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A reconfigurable and scalable architecture called the Direct Space-to-Information Converter (DSIC) is presented for rapid and energy-efficient direction-of-arrival (DoA) finding. In conventional delay-and-sum beamformers (CBF), the tradeoff between scan time, resolution and energy consumption is fixed due to the Nyquist sampling theorem. To accurately detect the DoA of an interferer, many scan angles and complex energy intensive calculations are needed. In contrast, the proposed DSIC directly converts an incoming wavefront to spatial information and generates only a few compressed sensing (CS) measurements by forming random projections of the spatial signal consecutively in time. The DoA of the wavefront is then rapidly found from these CS measurements. The energy consumption of the DSIC is 16x lower than the CBF for a realistic scenario where the DoA of only one large interferer needs to be found. Compared to other recently proposed CS DoA finders, the DSIC delivers significant reconfigurability and scalability advantages especially when the number of interferers is unknown.