Genetic Algorithm Based Storage and Retrieval System Optimization Considering Operational Constraints in a Multidimensional Warehouse

Huseyin Yilmaz, Adem Tuncer
{"title":"Genetic Algorithm Based Storage and Retrieval System Optimization Considering Operational Constraints in a Multidimensional Warehouse","authors":"Huseyin Yilmaz, Adem Tuncer","doi":"10.18100/ijamec.802125","DOIUrl":null,"url":null,"abstract":"Efficient use of warehouse resources is an important issue that makes them more manageable and useful, also helps product flow faster. In multidimensional warehouses with many constraints such as weight, volume, product compatibility, etc., storage and retrieval processes are complex optimization problems that need to be solved. Considering the number of constraints, the solution to the storage and retrieval problems with traditional algorithms take a long time. Meta-heuristic algorithms are frequently used in the solution of many complex optimization problems as they can provide acceptable solutions in a short time. In this study, the Genetic algorithm which is one of the popular meta-heuristic methods was used to solve this problem, and the A-star algorithm was used to travel the shortest path between the shelves. A three-dimensional warehouse with operational constraints was designed. Storage and retrieval orders containing a different number of pallets were produced randomly to perform warehouse product flow, and some of these orders were assumed as storage requests and the remainder were retrieval requests. Results show that the proposed approach is capable of finding effective solutions for storage and retrieval problems with operational constraints in a short time.","PeriodicalId":120305,"journal":{"name":"International Journal of Applied Mathematics Electronics and Computers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics Electronics and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18100/ijamec.802125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Efficient use of warehouse resources is an important issue that makes them more manageable and useful, also helps product flow faster. In multidimensional warehouses with many constraints such as weight, volume, product compatibility, etc., storage and retrieval processes are complex optimization problems that need to be solved. Considering the number of constraints, the solution to the storage and retrieval problems with traditional algorithms take a long time. Meta-heuristic algorithms are frequently used in the solution of many complex optimization problems as they can provide acceptable solutions in a short time. In this study, the Genetic algorithm which is one of the popular meta-heuristic methods was used to solve this problem, and the A-star algorithm was used to travel the shortest path between the shelves. A three-dimensional warehouse with operational constraints was designed. Storage and retrieval orders containing a different number of pallets were produced randomly to perform warehouse product flow, and some of these orders were assumed as storage requests and the remainder were retrieval requests. Results show that the proposed approach is capable of finding effective solutions for storage and retrieval problems with operational constraints in a short time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑操作约束的多维仓库遗传算法存储检索系统优化
有效利用仓库资源是一个重要的问题,它使仓库更易于管理和有用,也有助于产品更快地流动。在具有重量、体积、产品兼容性等诸多约束的多维仓库中,存储和检索过程是需要解决的复杂优化问题。由于约束条件较多,传统算法解决存储和检索问题的时间较长。元启发式算法由于能够在短时间内提供可接受的解,在许多复杂优化问题的求解中得到了广泛的应用。在本研究中,采用了目前流行的元启发式算法之一的遗传算法来解决这一问题,并采用A-star算法来实现货架间最短路径的移动。设计了一个具有操作约束的三维仓库。随机生成包含不同托盘数量的存储和检索订单来执行仓库产品流程,其中一些订单假设为存储请求,其余订单假设为检索请求。结果表明,该方法能够在短时间内找到具有操作约束的存储和检索问题的有效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative analysis of ANFIS models in Prediction of Streamflow: the case of Seyhan Basin Prediction of electromagnetic power density emitted from GSM base stations by using multiple linear regression Epileptic seizure detection combining power spectral density and high-frequency oscillations Adaptive Neural-Fuzzy controller design combined with LQR to control the position of gantry crane Evaluation of the performance of an unmanned aerial vehicle with artificial intelligence support and Mavlink protocol designed for response to social incidents response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1