{"title":"Coordinated motion planning for multiple car-like robots using probabilistic roadmaps","authors":"P. Svestka, M. Overmars","doi":"10.1109/ROBOT.1995.525508","DOIUrl":null,"url":null,"abstract":"Presents a new approach to the multi-robot path planning problem, where a number of robots are to change their positions through feasible motions in the same static environment. The approach is probabilistically complete. That is, any solvable problem is guaranteed to be solved within a finite amount of time. The method, which is an extension of previous work on probabilistic single-robot planners, is very flexible in the sense that it can easily be applied to different robot types. In this paper the authors apply it to non-holonomic car-like robots, and present experimental results which show that the method is powerful and fast.","PeriodicalId":432931,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Robotics and Automation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"191","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1995.525508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 191
Abstract
Presents a new approach to the multi-robot path planning problem, where a number of robots are to change their positions through feasible motions in the same static environment. The approach is probabilistically complete. That is, any solvable problem is guaranteed to be solved within a finite amount of time. The method, which is an extension of previous work on probabilistic single-robot planners, is very flexible in the sense that it can easily be applied to different robot types. In this paper the authors apply it to non-holonomic car-like robots, and present experimental results which show that the method is powerful and fast.