Single Word Term Extraction Using a Bilingual Semantic Lexicon-Based Approach

Hongying Zan, Guocheng Duan, Minghong Fan
{"title":"Single Word Term Extraction Using a Bilingual Semantic Lexicon-Based Approach","authors":"Hongying Zan, Guocheng Duan, Minghong Fan","doi":"10.1109/ICNC.2007.667","DOIUrl":null,"url":null,"abstract":"The existing approaches to automatic term recognition include these types: dictionary-based, rule-based, statistical, etc. First, we discuss the dictionary-based methods briefly in this paper. Then we propose an approach for Chinese single word term extraction combining the dictionary-based method with seed knowledge-based method. Our method is based on two resources. One is the Chinese concept dictionary which is a general bilingual semantic lexicon and the other one is the bilingual seeds set extracted from a bilingual glossary of HK law. The approach is to recognize the legal domain-specific term. Our approach is applying general semantic lexicon for domain-specific term extraction. The experimental results show that our approach can get high precision in legal field. Keywords: automatic term recognition, bilingual seeds set, Chinese concept dictionary, legal terminology, single word term.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The existing approaches to automatic term recognition include these types: dictionary-based, rule-based, statistical, etc. First, we discuss the dictionary-based methods briefly in this paper. Then we propose an approach for Chinese single word term extraction combining the dictionary-based method with seed knowledge-based method. Our method is based on two resources. One is the Chinese concept dictionary which is a general bilingual semantic lexicon and the other one is the bilingual seeds set extracted from a bilingual glossary of HK law. The approach is to recognize the legal domain-specific term. Our approach is applying general semantic lexicon for domain-specific term extraction. The experimental results show that our approach can get high precision in legal field. Keywords: automatic term recognition, bilingual seeds set, Chinese concept dictionary, legal terminology, single word term.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双语语义词典的单字词提取方法
现有的术语自动识别方法包括:基于字典的、基于规则的、统计的等。首先,本文简要讨论了基于字典的方法。在此基础上,提出了一种基于字典和基于种子知识相结合的中文单字词提取方法。我们的方法基于两个资源。一个是中文概念词典,这是一个通用的双语语义词典;另一个是从香港法律双语词汇中提取的双语种子集。方法是识别特定于法律领域的术语。我们的方法是将通用语义词典应用于特定领域的术语提取。实验结果表明,该方法在法律领域具有较高的精度。关键词:术语自动识别,双语种子集,汉语概念词典,法律术语,单字术语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1