Wavelet transformation approaches for prediction of atrial fibrillation

Hassan Serhal, Nassib Abdallah, J. Marion, P. Chauvet, Mohamad Oueidat, A. Humeau-Heurtier
{"title":"Wavelet transformation approaches for prediction of atrial fibrillation","authors":"Hassan Serhal, Nassib Abdallah, J. Marion, P. Chauvet, Mohamad Oueidat, A. Humeau-Heurtier","doi":"10.23919/eusipco55093.2022.9909695","DOIUrl":null,"url":null,"abstract":"Prediction of atrial fibrillation (AF) is a major issue in medicine. This is due to the fact that AF is often asymptomatic. In this work, we present approaches based on wavelet decomposition to find features in the signal that can predict this disease. Our model consists of four parts: pre-processing, feature extraction, feature selection, and classification for prediction. The presented work shows a good predictive performance (94% accuracy) before 5 min of AF onset and a prediction accuracy of 85.5%, 110 min before AF onset. Our code will be available for researchers upon request.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Prediction of atrial fibrillation (AF) is a major issue in medicine. This is due to the fact that AF is often asymptomatic. In this work, we present approaches based on wavelet decomposition to find features in the signal that can predict this disease. Our model consists of four parts: pre-processing, feature extraction, feature selection, and classification for prediction. The presented work shows a good predictive performance (94% accuracy) before 5 min of AF onset and a prediction accuracy of 85.5%, 110 min before AF onset. Our code will be available for researchers upon request.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小波变换在房颤预测中的应用
房颤(AF)的预测是医学上的一个主要问题。这是因为房颤通常是无症状的。在这项工作中,我们提出了基于小波分解的方法来寻找可以预测这种疾病的信号特征。该模型由预处理、特征提取、特征选择和分类预测四部分组成。本研究显示,在房颤发作前5分钟的预测准确率为94%,在房颤发作前110分钟的预测准确率为85.5%。我们的代码将提供给研究人员的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1