Hyeongjin Jo, Yonghyeon Bae, Yujun Song, Ji-Hyeon Song
{"title":"Stretchable Multi-mode Sensor with Yarn Structure","authors":"Hyeongjin Jo, Yonghyeon Bae, Yujun Song, Ji-Hyeon Song","doi":"10.1109/SENSORS52175.2022.9967163","DOIUrl":null,"url":null,"abstract":"Recently, there has been an emergence of advanced sensor technologies that append promising traits and compensate for problems in conventional sensors. The term “multi-functionality” is used to describe this trend of advancing conventional technologies in this field, such as endowing a sensor to be stretched or to sense multiple forces. Even with this trend, sensors exhibiting both stretchability and multi-modality have been barely explored. We introduce a multi-mode sensor with three modes to distinguish multiple motions: clockwise twisting, counterclockwise twisting, and stretching. It comprises of piezoelectric and piezoresistive sensors and is constructed in yarn structure with those two parts. With a stretchable substrate, this sensor exhibits stretchability. Moreover, by using the electrohydrodynamic spray method for depositing carbon nanotubes on the surface of substrates, a stretchable electrode layer for the piezoelectric sensor is developed. By responding differently with each external stimulus, the multi-mode sensor can determine forces applied on it. We also suggest a mathematical model to distinguish simultaneous stimuli.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Recently, there has been an emergence of advanced sensor technologies that append promising traits and compensate for problems in conventional sensors. The term “multi-functionality” is used to describe this trend of advancing conventional technologies in this field, such as endowing a sensor to be stretched or to sense multiple forces. Even with this trend, sensors exhibiting both stretchability and multi-modality have been barely explored. We introduce a multi-mode sensor with three modes to distinguish multiple motions: clockwise twisting, counterclockwise twisting, and stretching. It comprises of piezoelectric and piezoresistive sensors and is constructed in yarn structure with those two parts. With a stretchable substrate, this sensor exhibits stretchability. Moreover, by using the electrohydrodynamic spray method for depositing carbon nanotubes on the surface of substrates, a stretchable electrode layer for the piezoelectric sensor is developed. By responding differently with each external stimulus, the multi-mode sensor can determine forces applied on it. We also suggest a mathematical model to distinguish simultaneous stimuli.