Vision-based detection and classification of pavement mark using neural network for autonomous driving system

Yu-Bin Yoon, Se-Young Oh
{"title":"Vision-based detection and classification of pavement mark using neural network for autonomous driving system","authors":"Yu-Bin Yoon, Se-Young Oh","doi":"10.1109/URAI.2011.6146026","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm for an autonomous driving system which detects a pavement mark in an image of the road in front of a vehicle and identifies the mark. The algorithm uses edge pairing to find a pavement mark then identifies the type using a neural network which uses the horizontal and vertical projection of the founded mark as input. The network successfully classified 1073 of 1088 images. The result can be used to provide the accurate position of the vehicle in in-vehicle navigation systems.","PeriodicalId":385925,"journal":{"name":"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2011.6146026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an algorithm for an autonomous driving system which detects a pavement mark in an image of the road in front of a vehicle and identifies the mark. The algorithm uses edge pairing to find a pavement mark then identifies the type using a neural network which uses the horizontal and vertical projection of the founded mark as input. The network successfully classified 1073 of 1088 images. The result can be used to provide the accurate position of the vehicle in in-vehicle navigation systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的自动驾驶路面标志视觉检测与分类
本文提出了一种自动驾驶系统的算法,该算法在车辆前方的道路图像中检测路面标记并识别该标记。该算法首先利用边缘配对找到路面标记,然后利用路面标记的水平投影和垂直投影作为输入,利用神经网络识别路面标记的类型。该网络成功分类了1088张图片中的1073张。该结果可用于车载导航系统中提供车辆的准确位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
People tracking method for a mobile robot with laser scanner and omni directional camera Building a hierarchical robot task from multiple task procedures Probabilistic shape vision for embedded systems Inverse Kinematics solution of PUMA 560 robot arm using ANFIS Implementation of smartphone environment remote control and monitoring system for Android operating system-based robot platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1