Transfer Learning for Quantum Classifiers: An Information-Theoretic Generalization Analysis

Sharu Theresa Jose, O. Simeone
{"title":"Transfer Learning for Quantum Classifiers: An Information-Theoretic Generalization Analysis","authors":"Sharu Theresa Jose, O. Simeone","doi":"10.1109/ITW55543.2023.10160236","DOIUrl":null,"url":null,"abstract":"A key component of a quantum machine learning model operating on classical inputs is the design of an embedding circuit mapping inputs to a quantum state. This paper studies a transfer learning setting in which classical-to-quantum embedding is carried out by an arbitrary parametric quantum circuit that is pre-trained based on data from a source task. At run time, a binary quantum classifier of the embedding is optimized based on data from the target task of interest. The average excess risk, i.e., the optimality gap, of the resulting classifier depends on how (dis)similar the source and target tasks are. We introduce a new measure of (dis)similarity between the binary quantum classification tasks via the trace distances. An upper bound on the optimality gap is derived in terms of the proposed task (dis)similarity measure, two Rényi mutual information terms between classical input and quantum embedding under source and target tasks, as well as a measure of complexity of the combined space of quantum embeddings and classifiers under the source task. The theoretical results are validated on a simple binary classification example.","PeriodicalId":439800,"journal":{"name":"2023 IEEE Information Theory Workshop (ITW)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW55543.2023.10160236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A key component of a quantum machine learning model operating on classical inputs is the design of an embedding circuit mapping inputs to a quantum state. This paper studies a transfer learning setting in which classical-to-quantum embedding is carried out by an arbitrary parametric quantum circuit that is pre-trained based on data from a source task. At run time, a binary quantum classifier of the embedding is optimized based on data from the target task of interest. The average excess risk, i.e., the optimality gap, of the resulting classifier depends on how (dis)similar the source and target tasks are. We introduce a new measure of (dis)similarity between the binary quantum classification tasks via the trace distances. An upper bound on the optimality gap is derived in terms of the proposed task (dis)similarity measure, two Rényi mutual information terms between classical input and quantum embedding under source and target tasks, as well as a measure of complexity of the combined space of quantum embeddings and classifiers under the source task. The theoretical results are validated on a simple binary classification example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子分类器的迁移学习:一个信息论的泛化分析
在经典输入上运行的量子机器学习模型的关键组成部分是将输入映射到量子态的嵌入电路的设计。本文研究了一种迁移学习设置,其中经典到量子嵌入由任意参数量子电路进行,该电路基于源任务的数据进行预训练。在运行时,基于感兴趣的目标任务的数据对嵌入的二进制量子分类器进行优化。结果分类器的平均超额风险,即最优性差距,取决于源任务和目标任务的相似程度。我们引入了一种新的度量二元量子分类任务之间(非)相似度的方法,即迹距。根据所提出的任务(非)相似度度量、源任务和目标任务下经典输入与量子嵌入之间的两个r互信息项以及源任务下量子嵌入与分类器组合空间的复杂性度量,推导了最优性差距的上界。通过一个简单的二值分类实例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Code at the Receiver, Decode at the Sender: GRAND with Feedback The Secrecy Capacity of Gaussian Wiretap Channels with Rate-Limited Help at the Encoder Asymmetric tree correlation testing for graph alignment Symmetric 4-adic Complexity of Quaternary Sequences of Length pq with Low Autocorrelation Deterministic K-Identification For Slow Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1