{"title":"Privacy Preserving Collaborative Machine Learning","authors":"Zheyuan Liu, Rui Zhang","doi":"10.4108/EAI.14-7-2021.170295","DOIUrl":null,"url":null,"abstract":"Collaborative machine learning is a promising paradigm that allows multiple participants to jointly train a machine learning model without exposing their private datasets to other parties. Although collaborative machine learning is more privacy-friendly compared with conventional machine learning methods, the intermediate model parameters exchanged among different participants in the training process may still reveal sensitive information about participants’ local datasets. In this paper, we introduce a novel privacypreserving collaborative machine learning mechanism by utilizing two non-colluding servers to perform secure aggregation of the intermediate parameters from participants. Compared with other existing solutions, our solution can achieve the same level of accuracy while incurring significantly lower computational cost. Received on 23 February 2021; accepted on 15 June 2021; published on 14 July 2021","PeriodicalId":335727,"journal":{"name":"EAI Endorsed Trans. Security Safety","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Security Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.14-7-2021.170295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Collaborative machine learning is a promising paradigm that allows multiple participants to jointly train a machine learning model without exposing their private datasets to other parties. Although collaborative machine learning is more privacy-friendly compared with conventional machine learning methods, the intermediate model parameters exchanged among different participants in the training process may still reveal sensitive information about participants’ local datasets. In this paper, we introduce a novel privacypreserving collaborative machine learning mechanism by utilizing two non-colluding servers to perform secure aggregation of the intermediate parameters from participants. Compared with other existing solutions, our solution can achieve the same level of accuracy while incurring significantly lower computational cost. Received on 23 February 2021; accepted on 15 June 2021; published on 14 July 2021