Firas Bayram, Bestoun S. Ahmed, Erik Hallin, Anton Engman
{"title":"DQSOps: Data Quality Scoring Operations Framework for Data-Driven Applications","authors":"Firas Bayram, Bestoun S. Ahmed, Erik Hallin, Anton Engman","doi":"10.1145/3593434.3593445","DOIUrl":null,"url":null,"abstract":"Data quality assessment has become a prominent component in the successful execution of complex data-driven artificial intelligence (AI) software systems. In practice, real-world applications generate huge volumes of data at speeds. These data streams require analysis and preprocessing before being permanently stored or used in a learning task. Therefore, significant attention has been paid to the systematic management and construction of high-quality datasets. Nevertheless, managing voluminous and high-velocity data streams is usually performed manually (i.e. offline), making it an impractical strategy in production environments. To address this challenge, DataOps has emerged to achieve life-cycle automation of data processes using DevOps principles. However, determining the data quality based on a fitness scale constitutes a complex task within the framework of DataOps. This paper presents a novel Data Quality Scoring Operations (DQSOps) framework that yields a quality score for production data in DataOps workflows. The framework incorporates two scoring approaches, an ML prediction-based approach that predicts the data quality score and a standard-based approach that periodically produces the ground-truth scores based on assessing several data quality dimensions. We deploy the DQSOps framework in a real-world industrial use case. The results show that DQSOps achieves significant computational speedup rates compared to the conventional approach of data quality scoring while maintaining high prediction performance.","PeriodicalId":178596,"journal":{"name":"Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3593434.3593445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Data quality assessment has become a prominent component in the successful execution of complex data-driven artificial intelligence (AI) software systems. In practice, real-world applications generate huge volumes of data at speeds. These data streams require analysis and preprocessing before being permanently stored or used in a learning task. Therefore, significant attention has been paid to the systematic management and construction of high-quality datasets. Nevertheless, managing voluminous and high-velocity data streams is usually performed manually (i.e. offline), making it an impractical strategy in production environments. To address this challenge, DataOps has emerged to achieve life-cycle automation of data processes using DevOps principles. However, determining the data quality based on a fitness scale constitutes a complex task within the framework of DataOps. This paper presents a novel Data Quality Scoring Operations (DQSOps) framework that yields a quality score for production data in DataOps workflows. The framework incorporates two scoring approaches, an ML prediction-based approach that predicts the data quality score and a standard-based approach that periodically produces the ground-truth scores based on assessing several data quality dimensions. We deploy the DQSOps framework in a real-world industrial use case. The results show that DQSOps achieves significant computational speedup rates compared to the conventional approach of data quality scoring while maintaining high prediction performance.