The convergence rate of linearly separable SMO

J. Lázaro, José R. Dorronsoro
{"title":"The convergence rate of linearly separable SMO","authors":"J. Lázaro, José R. Dorronsoro","doi":"10.1109/IJCNN.2013.6707034","DOIUrl":null,"url":null,"abstract":"It is well known that the dual function value sequence generated by SMO has a linear convergence rate when the kernel matrix is positive definite and sublinear convergence is also known to hold for a general matrix. In this paper we will prove that, when applied to hard-margin, i.e., linearly separable SVM problems, a linear convergence rate holds for the SMO algorithm without any condition on the kernel matrix. Moreover, we will also show linear convergence for the multiplier sequence generated by SMO, the corresponding weight vectors and the KKT gap usually applied to control the number of SMO iterations. This gives a fairly complete picture of the convergence of the various sequences SMO generates. While linear SMO convergence for the general SVM L1 soft margin problem is still open, the approach followed here may lead to such a general result.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6707034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

It is well known that the dual function value sequence generated by SMO has a linear convergence rate when the kernel matrix is positive definite and sublinear convergence is also known to hold for a general matrix. In this paper we will prove that, when applied to hard-margin, i.e., linearly separable SVM problems, a linear convergence rate holds for the SMO algorithm without any condition on the kernel matrix. Moreover, we will also show linear convergence for the multiplier sequence generated by SMO, the corresponding weight vectors and the KKT gap usually applied to control the number of SMO iterations. This gives a fairly complete picture of the convergence of the various sequences SMO generates. While linear SMO convergence for the general SVM L1 soft margin problem is still open, the approach followed here may lead to such a general result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性可分SMO的收敛速度
众所周知,SMO生成的对偶函数值序列在核矩阵为正定时具有线性收敛速率,对于一般矩阵也具有亚线性收敛性。在本文中,我们将证明,当应用于硬边界,即线性可分的SVM问题时,SMO算法在核矩阵上没有任何条件的情况下保持线性收敛率。此外,我们还将展示SMO生成的乘法器序列的线性收敛性,以及相应的权向量和通常用于控制SMO迭代次数的KKT间隙。这给出了SMO生成的各种序列收敛的相当完整的图像。虽然对于一般SVM L1软边界问题的线性SMO收敛仍然是开放的,但本文所采用的方法可能会得到这样一个一般的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An SVM-based approach for stock market trend prediction Spiking neural networks for financial data prediction Improving multi-label classification performance by label constraints Biologically inspired intensity and range image feature extraction A location-independent direct link neuromorphic interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1