Efficient and Robust High-Level Synthesis Design Space Exploration through offline Micro-kernels Pre-characterization

Zi Wang, Jianqi Chen, Benjamin Carrión Schäfer
{"title":"Efficient and Robust High-Level Synthesis Design Space Exploration through offline Micro-kernels Pre-characterization","authors":"Zi Wang, Jianqi Chen, Benjamin Carrión Schäfer","doi":"10.23919/DATE48585.2020.9116309","DOIUrl":null,"url":null,"abstract":"This work proposes a method to accelerate the process of High-Level Synthesis (HLS) Design Space Exploration (DSE) by pre-characterizing micro-kernels offline and creating predictive models of these. HLS allows to generate different types of micro-architectures from the same untimed behavioral description. This is typically done by setting different combinations of synthesis options in the form or synthesis directives specified as pragmas in the code. This allows, e.g. to control how loops should be synthesized, arrays and functions. Unique combinations of these pragmas leads to micro-architectures with a unique area vs. performance/power trade-offs. The main problem is that the search space grows exponentially with the number of explorable operations. Thus, the main goal of efficient HLS DSE is to find the synthesis directives’ combinations that lead to the Pareto-optimal designs quickly. Our proposed method is based on the pre-characterization of micro-kernels offline, creating predictive models for each of the kernels, and using the results to explore a new unseen behavioral description using compositional methods. In addition, we make use of perceptual hashing to match new unseen micro-kernels with the pre-characterized micro-kernels in order to further speed up the search process. Experimental results show that our proposed method is orders of magnitude faster than traditional methods.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This work proposes a method to accelerate the process of High-Level Synthesis (HLS) Design Space Exploration (DSE) by pre-characterizing micro-kernels offline and creating predictive models of these. HLS allows to generate different types of micro-architectures from the same untimed behavioral description. This is typically done by setting different combinations of synthesis options in the form or synthesis directives specified as pragmas in the code. This allows, e.g. to control how loops should be synthesized, arrays and functions. Unique combinations of these pragmas leads to micro-architectures with a unique area vs. performance/power trade-offs. The main problem is that the search space grows exponentially with the number of explorable operations. Thus, the main goal of efficient HLS DSE is to find the synthesis directives’ combinations that lead to the Pareto-optimal designs quickly. Our proposed method is based on the pre-characterization of micro-kernels offline, creating predictive models for each of the kernels, and using the results to explore a new unseen behavioral description using compositional methods. In addition, we make use of perceptual hashing to match new unseen micro-kernels with the pre-characterized micro-kernels in order to further speed up the search process. Experimental results show that our proposed method is orders of magnitude faster than traditional methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于离线微核预表征的高效鲁棒高级综合设计空间探索
本研究提出了一种通过离线预表征微核并创建预测模型来加速高级综合(HLS)设计空间探索(DSE)过程的方法。HLS允许从相同的非定时行为描述生成不同类型的微架构。这通常是通过在表单中设置合成选项的不同组合或在代码中作为pragmas指定的合成指令来完成的。这允许,例如,控制循环应该如何合成,数组和函数。这些实用程序的独特组合导致了具有独特区域与性能/功耗权衡的微体系结构。主要问题是搜索空间随着可探索操作的数量呈指数增长。因此,高效HLS DSE的主要目标是找到快速实现帕累托最优设计的合成指令组合。我们提出的方法是基于离线对微核的预表征,为每个核创建预测模型,并利用结果利用组合方法探索一种新的看不见的行为描述。此外,我们利用感知哈希将新的未见微核与预表征的微核进行匹配,以进一步加快搜索过程。实验结果表明,该方法比传统方法快了几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1