B. Kailkhura, P. Ray, D. Rajan, A. Yen, P. Barnes, R. Goldhahn
{"title":"Byzantine-Resilient locally optimum detection using collaborative autonomous networks","authors":"B. Kailkhura, P. Ray, D. Rajan, A. Yen, P. Barnes, R. Goldhahn","doi":"10.1109/CAMSAP.2017.8313059","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a locally optimum detection (LOD) scheme for detecting a weak radioactive source buried in background clutter. We develop a decentralized algorithm, based on alternating direction method of multipliers (ADMM), for implementing the proposed scheme in autonomous sensor networks. Results show that algorithm performance approaches the centralized clairvoyant detection algorithm in the low SNR regime, and exhibits excellent convergence rate and scaling behavior (w.r.t. number of nodes). We also devise a low-overhead, robust ADMM algorithm for Byzantine-resilient detection, and demonstrate its robustness to data falsification attacks.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, we propose a locally optimum detection (LOD) scheme for detecting a weak radioactive source buried in background clutter. We develop a decentralized algorithm, based on alternating direction method of multipliers (ADMM), for implementing the proposed scheme in autonomous sensor networks. Results show that algorithm performance approaches the centralized clairvoyant detection algorithm in the low SNR regime, and exhibits excellent convergence rate and scaling behavior (w.r.t. number of nodes). We also devise a low-overhead, robust ADMM algorithm for Byzantine-resilient detection, and demonstrate its robustness to data falsification attacks.