Double-State-Temporal Difference Learning for Resource Provisioning in Uncertain Fog Computing Environment

B. K. Murthy, S. Shiva
{"title":"Double-State-Temporal Difference Learning for Resource Provisioning in Uncertain Fog Computing Environment","authors":"B. K. Murthy, S. Shiva","doi":"10.1109/iemcon53756.2021.9623085","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) has evolved at a faster rate in recent years. Fog computing can perform a substantial amount of computation at a faster rate and is capable of dealing with IoT applications with huge traffic demands and stringent Quality of Service (QoS) requirements. Resource provisioning issues in fog computing are addressed using double-state-temporal difference learning. By considering double Q-states while propagating the temporal difference error, high quality resource provisioning policies can be formed. The proposed resource-provisioning scheme outperforms one of the recent works in terms of the performance metrics such as execution time, learning rate, accuracy and resource utilization rate under varying uncertainties of the task and grid resource parameters.","PeriodicalId":272590,"journal":{"name":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemcon53756.2021.9623085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Internet of Things (IoT) has evolved at a faster rate in recent years. Fog computing can perform a substantial amount of computation at a faster rate and is capable of dealing with IoT applications with huge traffic demands and stringent Quality of Service (QoS) requirements. Resource provisioning issues in fog computing are addressed using double-state-temporal difference learning. By considering double Q-states while propagating the temporal difference error, high quality resource provisioning policies can be formed. The proposed resource-provisioning scheme outperforms one of the recent works in terms of the performance metrics such as execution time, learning rate, accuracy and resource utilization rate under varying uncertainties of the task and grid resource parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定雾计算环境下资源分配的双状态-时间差分学习
近年来,物联网(IoT)以更快的速度发展。雾计算可以以更快的速度执行大量计算,能够处理具有巨大流量需求和严格服务质量(QoS)要求的物联网应用。雾计算中的资源供应问题使用双状态-时间差分学习来解决。通过在传播时间差误差时考虑双q状态,可以形成高质量的资源供应策略。本文提出的资源分配方案在任务和网格资源参数变化不确定性的情况下,在执行时间、学习率、准确率和资源利用率等性能指标上都优于最近的一项工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximization of the User Association of a Low-Power Tier Deploying Biased User Association Scheme in 5G Multi-Tier Heterogeneous Network A Deep Reinforcement Learning: Location-based Resource Allocation for Congested C-V2X Scenario A Deep Learning Approach to Predict Chronic Kidney Disease in Human Evaluation of a bio-socially inspired secure DSA scheme using testbed-calibrated hybrid simulations Siamese Network based Pulse and Signal Attribute Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1