{"title":"M-PCA Binary Embedding for Approximate Nearest Neighbor Search","authors":"Ezgi C. Ozan, S. Kiranyaz, M. Gabbouj","doi":"10.1109/Trustcom.2015.554","DOIUrl":null,"url":null,"abstract":"Principal Component Analysis (PCA) is widely used within binary embedding methods for approximate nearest neighbor search and has proven to have a significant effect on the performance. Current methods aim to represent the whole data using a single PCA however, considering the Gaussian distribution requirements of PCA, this representation is not appropriate. In this study we propose using Multiple PCA (M-PCA) transformations to represent the whole data and show that it increases the performance significantly compared to methods using a single PCA.","PeriodicalId":277092,"journal":{"name":"2015 IEEE Trustcom/BigDataSE/ISPA","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Trustcom/BigDataSE/ISPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Trustcom.2015.554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Principal Component Analysis (PCA) is widely used within binary embedding methods for approximate nearest neighbor search and has proven to have a significant effect on the performance. Current methods aim to represent the whole data using a single PCA however, considering the Gaussian distribution requirements of PCA, this representation is not appropriate. In this study we propose using Multiple PCA (M-PCA) transformations to represent the whole data and show that it increases the performance significantly compared to methods using a single PCA.