APREP-DM: a Framework for Automating the Pre-Processing of a Sensor Data Analysis based on CRISP-DM

Hiroko Nagashima, Yuka Kato
{"title":"APREP-DM: a Framework for Automating the Pre-Processing of a Sensor Data Analysis based on CRISP-DM","authors":"Hiroko Nagashima, Yuka Kato","doi":"10.1109/PERCOMW.2019.8730785","DOIUrl":null,"url":null,"abstract":"The need for analyzing data is increasing at an unprecedented rate. Well-known examples include customer behavioral patterns in shops, the autonomous motion of robots, and fault prediction. Pre-processing of data is essential for achieving accurate results. This includes detecting outliers, handling missing data, and data formatting, integration, and normalization. Pre-processing is necessary for eliminating ambiguities and inconsistencies. We here propose a framework called APREP-DM (for the Automated PRE-Processing for Data Mining) applicable to data analysis, including using sensor data. We evaluate two types of perspectives: (1) considering pre-processing in a test-case scenario involving pedestrian trajectory tracking, and (2) comparing APREP-DM with the outcomes of other existing frameworks from four different perspectives. We conclude that APREP-DM is suitable for analyzing sensor data.","PeriodicalId":437017,"journal":{"name":"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2019.8730785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The need for analyzing data is increasing at an unprecedented rate. Well-known examples include customer behavioral patterns in shops, the autonomous motion of robots, and fault prediction. Pre-processing of data is essential for achieving accurate results. This includes detecting outliers, handling missing data, and data formatting, integration, and normalization. Pre-processing is necessary for eliminating ambiguities and inconsistencies. We here propose a framework called APREP-DM (for the Automated PRE-Processing for Data Mining) applicable to data analysis, including using sensor data. We evaluate two types of perspectives: (1) considering pre-processing in a test-case scenario involving pedestrian trajectory tracking, and (2) comparing APREP-DM with the outcomes of other existing frameworks from four different perspectives. We conclude that APREP-DM is suitable for analyzing sensor data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
APREP-DM:基于CRISP-DM的传感器数据分析自动化预处理框架
分析数据的需求正以前所未有的速度增长。众所周知的例子包括商店中的顾客行为模式、机器人的自主运动和故障预测。数据的预处理对于获得准确的结果至关重要。这包括检测异常值、处理缺失数据以及数据格式化、集成和规范化。预处理对于消除歧义和不一致是必要的。我们在这里提出了一个名为APREP-DM(数据挖掘自动化预处理)的框架,适用于数据分析,包括使用传感器数据。我们评估了两种类型的视角:(1)在涉及行人轨迹跟踪的测试用例场景中考虑预处理;(2)从四个不同的角度将APREP-DM与其他现有框架的结果进行比较。我们得出结论,APREP-DM适用于分析传感器数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Protecting IoT-environments against Traffic Analysis Attacks with Traffic Morphing Anticipated Acceptance of Head Mounted Displays: a content analysis of YouTube comments Straightforward Recognition of Daily Objects in Smart Environments from Wearable Vision Sensor A Blockchain-Based Architecture for Integrated Smart Parking Systems Vision and Acceleration Modalities: Partners for Recognizing Complex Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1