Two-directional simultaneous inference for high-dimensional models

Wei Liu, Huazhen Lin, Jin Liu, Shu-rong Zheng
{"title":"Two-directional simultaneous inference for high-dimensional models","authors":"Wei Liu, Huazhen Lin, Jin Liu, Shu-rong Zheng","doi":"10.1080/07350015.2023.2191672","DOIUrl":null,"url":null,"abstract":"This paper proposes a general two directional simultaneous inference (TOSI) framework for high-dimensional models with a manifest variable or latent variable structure, for example, high-dimensional mean models, high-dimensional sparse regression models, and high-dimensional latent factors models. TOSI performs simultaneous inference on a set of parameters from two directions, one to test whether the assumed zero parameters indeed are zeros and one to test whether exist zeros in the parameter set of nonzeros. As a result, we can exactly identify whether the parameters are zeros, thereby keeping the data structure fully and parsimoniously expressed. We theoretically prove that the proposed TOSI method asymptotically controls the Type I error at the prespecified significance level and that the testing power converges to one. Simulations are conducted to examine the performance of the proposed method in finite sample situations and two real datasets are analyzed. The results show that the TOSI method is more predictive and has more interpretable estimators than existing methods.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2023.2191672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a general two directional simultaneous inference (TOSI) framework for high-dimensional models with a manifest variable or latent variable structure, for example, high-dimensional mean models, high-dimensional sparse regression models, and high-dimensional latent factors models. TOSI performs simultaneous inference on a set of parameters from two directions, one to test whether the assumed zero parameters indeed are zeros and one to test whether exist zeros in the parameter set of nonzeros. As a result, we can exactly identify whether the parameters are zeros, thereby keeping the data structure fully and parsimoniously expressed. We theoretically prove that the proposed TOSI method asymptotically controls the Type I error at the prespecified significance level and that the testing power converges to one. Simulations are conducted to examine the performance of the proposed method in finite sample situations and two real datasets are analyzed. The results show that the TOSI method is more predictive and has more interpretable estimators than existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维模型的双向同时推理
本文针对具有显变量或潜变量结构的高维模型,如高维均值模型、高维稀疏回归模型和高维潜在因子模型,提出了一种通用的双向同时推理(TOSI)框架。TOSI从两个方向同时对一组参数进行推理,一个是测试假设的零参数是否确实为零,另一个是测试非零参数集中是否存在零。因此,我们可以准确地识别参数是否为零,从而保持数据结构的完整和简洁的表达。我们从理论上证明了所提出的TOSI方法将I型误差渐近地控制在预定的显著性水平上,并且测试功率收敛于1。通过仿真验证了该方法在有限样本情况下的性能,并对两个真实数据集进行了分析。结果表明,与现有方法相比,TOSI方法具有更强的预测性和更多的可解释估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decomposition of Differences in Distribution under Sample Selection and the Gender Wage Gap Imputation of Counterfactual Outcomes when the Errors are Predicatable Simultaneous Confidence Intervals for Partially Identified Parameters Estimation of the Local Conditional Tail Average Treatment Effect* Forecasting Inflation Using Economic Narratives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1