Supercapacitors ageing prediction by neural networks

A. Soualhi, A. Sari, H. Razik, P. Venet, G. Clerc, R. German, O. Briat, J. Vinassa
{"title":"Supercapacitors ageing prediction by neural networks","authors":"A. Soualhi, A. Sari, H. Razik, P. Venet, G. Clerc, R. German, O. Briat, J. Vinassa","doi":"10.1109/IECON.2013.6700260","DOIUrl":null,"url":null,"abstract":"Supercapacitors are devices used in wide range of applications, for example in automotive applications. Therefore, it is important to monitor and track their ageing. This paper presents a new approach for predicting the ageing of supercapacitors based on the neo-fuzzy neuron in association with the one-step ahead time series prediction. Ageing information collected from the measurement of the equivalent series resistance and the double layer capacitance are used to train the neo-fuzzy neuron. The obtained model is used as a prognostic tool in order to forecast the ageing of supercapacitors. The performance of the proposed approach is evaluated by using an experimental platform for ageing supercapacitors. The experimental results show that the neo-fuzzy prediction model can track the ageing of supercapacitors.","PeriodicalId":237327,"journal":{"name":"IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2013.6700260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Supercapacitors are devices used in wide range of applications, for example in automotive applications. Therefore, it is important to monitor and track their ageing. This paper presents a new approach for predicting the ageing of supercapacitors based on the neo-fuzzy neuron in association with the one-step ahead time series prediction. Ageing information collected from the measurement of the equivalent series resistance and the double layer capacitance are used to train the neo-fuzzy neuron. The obtained model is used as a prognostic tool in order to forecast the ageing of supercapacitors. The performance of the proposed approach is evaluated by using an experimental platform for ageing supercapacitors. The experimental results show that the neo-fuzzy prediction model can track the ageing of supercapacitors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的超级电容器老化预测
超级电容器是广泛应用的器件,例如在汽车应用中。因此,监测和跟踪它们的衰老是很重要的。提出了一种基于新模糊神经元与超前一步时间序列预测相结合的超级电容器老化预测新方法。从等效串联电阻和双层电容的测量中收集的老化信息用于训练新模糊神经元。所得模型可作为预测超级电容器老化的预测工具。利用老化超级电容器的实验平台对该方法的性能进行了评估。实验结果表明,新模糊预测模型可以对超级电容器的老化进行跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving 3D scan matching time of the coarse binary cubes method with fast spatial subsampling Fault-tolerant operation of an open-end winding five-phase PMSM drive with inverter faults Large scale micro-macro bilateral control using piezoelectric cantilever with plant nominalization A study on methods to design and select energy storage devices for Fuel Cell hybrid powered railway vehicles Development of a half-circle-shaped tubular permanent magnet machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1