Creating RGB Images from Hyperspectral Images Using a Color Matching Function

Magnus I. Magnusson, J. Sigurdsson, Sveinn Eirikur Armansson, M. Ulfarsson, H. Deborah, J. R. Sveinsson
{"title":"Creating RGB Images from Hyperspectral Images Using a Color Matching Function","authors":"Magnus I. Magnusson, J. Sigurdsson, Sveinn Eirikur Armansson, M. Ulfarsson, H. Deborah, J. R. Sveinsson","doi":"10.1109/IGARSS39084.2020.9323397","DOIUrl":null,"url":null,"abstract":"Hyperspectral images (HSI) are composed of hundreds of spectral bands, covering a broad range of the electromagnetic spectrum. However, images can only be visualized using three spectral channels for red, green, and blue (RGB) colors. Generating realistic RGB images using HSI is seldom the main focus of remote sensing researchers, and is therefore sometimes lacking. In this paper, we present an algorithm which creates realistic color images of HSI, using standardized methods. Research, conducted on the human perception of color in the 1920s culminated in the CIE 1931 XYZ color space. The algorithm maps every spectral band in the visible spectrum to the XYZ color space, using D65 as the reference illuminant, and then maps the XYZ to the sRGB (standard Red Green Blue) color space. The image is gamma-corrected and finally thresholded to improve contrast. The method was validated using two HSIs, creating realistic color images.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Hyperspectral images (HSI) are composed of hundreds of spectral bands, covering a broad range of the electromagnetic spectrum. However, images can only be visualized using three spectral channels for red, green, and blue (RGB) colors. Generating realistic RGB images using HSI is seldom the main focus of remote sensing researchers, and is therefore sometimes lacking. In this paper, we present an algorithm which creates realistic color images of HSI, using standardized methods. Research, conducted on the human perception of color in the 1920s culminated in the CIE 1931 XYZ color space. The algorithm maps every spectral band in the visible spectrum to the XYZ color space, using D65 as the reference illuminant, and then maps the XYZ to the sRGB (standard Red Green Blue) color space. The image is gamma-corrected and finally thresholded to improve contrast. The method was validated using two HSIs, creating realistic color images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用颜色匹配功能从高光谱图像创建RGB图像
高光谱图像(HSI)由数百个光谱带组成,覆盖了广泛的电磁频谱。然而,图像只能使用红、绿、蓝(RGB)三种光谱通道进行可视化。使用HSI生成真实的RGB图像很少是遥感研究人员的主要关注点,因此有时缺乏。在本文中,我们提出了一种使用标准化方法创建逼真的HSI彩色图像的算法。20世纪20年代对人类色彩感知的研究在CIE 1931 XYZ色彩空间中达到顶峰。该算法将可见光谱中的每个光谱波段映射到XYZ色彩空间,使用D65作为参考光源,然后将XYZ映射到sRGB(标准红绿蓝)色彩空间。图像经过伽玛校正,最后进行阈值处理以提高对比度。使用两个hsi验证了该方法,生成了逼真的彩色图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retrieval of Solar-Induced Chlorophyll Fluorescence at Red Spectral Peak with Tropomi on Sentinel-5 Precursor Mapping the Rate of Carbon Mineralization in Oman Ophiolites Using Sentinel-1 InSAR Time Series Characterization of Biomass Burning Aerosols During the 2019 Fire Event: Singapore and Kuching Cities Exploitation of Earth Observations: OGC Contributions to GRSS Earth Science Informatics A Pseudospectral Time-Domain Simulator for Large-Scale Half-Space Electromagnetic Scattering and Radar Sounding Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1