Predicting Movie Box Office Profitability: A Neural Network Approach

Travis Ginmu Rhee, F. Zulkernine
{"title":"Predicting Movie Box Office Profitability: A Neural Network Approach","authors":"Travis Ginmu Rhee, F. Zulkernine","doi":"10.1109/ICMLA.2016.0117","DOIUrl":null,"url":null,"abstract":"In this research, we have developed a model for predicting the profitability class of a movie namely \"Profit\" and \"Loss\" based on the data about movies released between the years 2010 and 2015. Our methodology considers both historical data as well as data extracted from the social media. This data is normalized and then given a weight using standard normalization techniques. The cleaned and normalized dataset is then used to train a back-propagation cross entropy validated neural network. Results show that our strategy of identifying the class of success is highly effective and accurate when compared to the results from using a support machine vector on the data.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In this research, we have developed a model for predicting the profitability class of a movie namely "Profit" and "Loss" based on the data about movies released between the years 2010 and 2015. Our methodology considers both historical data as well as data extracted from the social media. This data is normalized and then given a weight using standard normalization techniques. The cleaned and normalized dataset is then used to train a back-propagation cross entropy validated neural network. Results show that our strategy of identifying the class of success is highly effective and accurate when compared to the results from using a support machine vector on the data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测电影票房收益:一种神经网络方法
在本研究中,我们基于2010年至2015年上映的电影数据,建立了一个预测电影盈利类别的模型,即“盈利”和“亏损”。我们的方法考虑了历史数据以及从社交媒体中提取的数据。该数据被规范化,然后使用标准规范化技术给定权重。然后使用清理和归一化的数据集来训练反向传播交叉熵验证的神经网络。结果表明,与在数据上使用支持机向量的结果相比,我们识别成功类别的策略是非常有效和准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prediction Modelling and Pattern Detection Approach for the First-Episode Psychosis Associated to Cannabis Use An Effective and Efficient Similarity-Matrix-Based Algorithm for Clustering Big Mobile Social Data Time Series Classification Using Time Warping Invariant Echo State Networks Improved Time Series Classification with Representation Diversity and SVM Android Malware Detection: Building Useful Representations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1