B-DRRN: A Block Information Constrained Deep Recursive Residual Network for Video Compression Artifacts Reduction

Hoang Man Trinh, Jinjia Zhou
{"title":"B-DRRN: A Block Information Constrained Deep Recursive Residual Network for Video Compression Artifacts Reduction","authors":"Hoang Man Trinh, Jinjia Zhou","doi":"10.1109/PCS48520.2019.8954521","DOIUrl":null,"url":null,"abstract":"Although the video compression ratio nowadays becomes higher, the video coders such as H.264/AVC, H.265/HEVC, H.266/VVC always suffer from the video artifacts. In this paper, we design a neural network to enhance the quality of the compressed frame by leveraging the block information, called B-DRRN (Deep Recursive Residual Network with Block information). Firstly, an extra network branch is designed for leveraging the block information of the coding unit (CU). Moreover, to avoid a great increase in the network size, Recursive Residual structure and sharing weight techniques are applied. We also conduct a new large-scale dataset with 209,152 training samples. Experimental results show that the proposed B-DRRN can reduce 6.16% BD-rate compared to HEVC standard. After efficiently adding an extra network branch, this work can improve the performance of the main network without increasing any memory for storing.","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Although the video compression ratio nowadays becomes higher, the video coders such as H.264/AVC, H.265/HEVC, H.266/VVC always suffer from the video artifacts. In this paper, we design a neural network to enhance the quality of the compressed frame by leveraging the block information, called B-DRRN (Deep Recursive Residual Network with Block information). Firstly, an extra network branch is designed for leveraging the block information of the coding unit (CU). Moreover, to avoid a great increase in the network size, Recursive Residual structure and sharing weight techniques are applied. We also conduct a new large-scale dataset with 209,152 training samples. Experimental results show that the proposed B-DRRN can reduce 6.16% BD-rate compared to HEVC standard. After efficiently adding an extra network branch, this work can improve the performance of the main network without increasing any memory for storing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
B-DRRN:一种基于块信息约束的深度递归残差网络
虽然目前视频压缩比越来越高,但H.264/AVC、H.265/HEVC、H.266/VVC等视频编码器都存在视频伪影问题。在本文中,我们设计了一个神经网络,利用块信息来提高压缩帧的质量,称为B-DRRN(深度递归残差网络与块信息)。首先,设计了一个额外的网络分支来利用编码单元(CU)的块信息。此外,为了避免网络规模的大幅增加,采用了递归残差结构和共享权值技术。我们还进行了一个新的大规模数据集,其中包含209,152个训练样本。实验结果表明,与HEVC标准相比,所提出的B-DRRN可降低6.16%的bd率。在有效地增加一个额外的网络分支后,这项工作可以在不增加任何存储内存的情况下提高主网络的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Delivery of Very High Dynamic Range Compressed Imagery by Dynamic-Range-of-Interest Novel Coding Tools Based on Characteristics for Short Videos Extending Video Decoding Energy Models for 360° and HDR Video Formats in HEVC Generalized binary splits: A versatile partitioning scheme for block-based hybrid video coding An IBP-CNN Based Fast Block Partition For Intra Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1