NS-KWS: joint optimization of near-sensor processing architecture and low-precision GRU for always-on keyword spotting

Qin Li, Sheng Lin, Changlu Liu, Yidong Liu, F. Qiao, Yanzhi Wang, Huazhong Yang
{"title":"NS-KWS: joint optimization of near-sensor processing architecture and low-precision GRU for always-on keyword spotting","authors":"Qin Li, Sheng Lin, Changlu Liu, Yidong Liu, F. Qiao, Yanzhi Wang, Huazhong Yang","doi":"10.1145/3370748.3407001","DOIUrl":null,"url":null,"abstract":"Keyword spotting (KWS) is a crucial front-end module in the whole speech interaction system. The always-on KWS module detects input words, then activates the energy-consuming complex backend system when keywords are detected. The performance of the KWS determines the standby performance of the whole system and the conventional KWS module encounters the power consumption bottleneck problem of the data conversion near the microphone sensor. In this paper, we propose an energy-efficient near-sensor processing architecture for always-on KWS, which could enhance continuous perception of the whole speech interaction system. By implementing the keyword detection in the analog domain after the microphone sensor, this architecture avoids energy-consuming data converter and achieves faster speed than conventional realizations. In addition, we propose a lightweight gated recurrent unit (GRU) with negligible accuracy loss to ensure the recognition performance. We also implement and fabricate the proposed KWS system with the CMOS 0.18μm process. In the system-view evaluation results, the hardware-software co-design architecture achieves 65.6% energy consumption saving and 71 times speed up than state of the art.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3407001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Keyword spotting (KWS) is a crucial front-end module in the whole speech interaction system. The always-on KWS module detects input words, then activates the energy-consuming complex backend system when keywords are detected. The performance of the KWS determines the standby performance of the whole system and the conventional KWS module encounters the power consumption bottleneck problem of the data conversion near the microphone sensor. In this paper, we propose an energy-efficient near-sensor processing architecture for always-on KWS, which could enhance continuous perception of the whole speech interaction system. By implementing the keyword detection in the analog domain after the microphone sensor, this architecture avoids energy-consuming data converter and achieves faster speed than conventional realizations. In addition, we propose a lightweight gated recurrent unit (GRU) with negligible accuracy loss to ensure the recognition performance. We also implement and fabricate the proposed KWS system with the CMOS 0.18μm process. In the system-view evaluation results, the hardware-software co-design architecture achieves 65.6% energy consumption saving and 71 times speed up than state of the art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NS-KWS:近传感器处理架构和低精度GRU的联合优化,用于始终在线的关键字识别
关键词识别是整个语音交互系统的关键前端模块。始终在线的KWS模块检测输入的单词,然后在检测到关键字时激活消耗能量的复杂后端系统。KWS的性能决定了整个系统的待机性能,传统的KWS模块遇到了麦克风传感器附近数据转换的功耗瓶颈问题。在本文中,我们提出了一种节能的近传感器处理架构,用于始终在线的语音交互系统,可以增强整个语音交互系统的连续感知。该架构通过在麦克风传感器后实现模拟域的关键字检测,避免了数据转换器的耗能,实现了比传统实现更快的速度。此外,我们提出了一种轻量级的门控循环单元(GRU),其精度损失可以忽略不计,以确保识别性能。我们还利用CMOS 0.18μm工艺实现并制造了所提出的KWS系统。在系统视图评估结果中,软硬件协同设计架构实现了65.6%的能耗节约和71倍的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1