Fast extraction of gradual association rules: a heuristic based method

Lisa Di-Jorio, Anne Laurent, M. Teisseire
{"title":"Fast extraction of gradual association rules: a heuristic based method","authors":"Lisa Di-Jorio, Anne Laurent, M. Teisseire","doi":"10.1145/1456223.1456268","DOIUrl":null,"url":null,"abstract":"Even if they have proven to be relevant on traditional transactional databases, data mining tools are still inefficient on some kinds of databases. In particular, databases containing discrete values or having a value for each item, like gene expression data, are especially challenging. On such data, existing approaches either transform the data to classical binary attributes, or use discretisation, including fuzzy partition to deal with the data. However, binary mapping of such databases drives to a loss of information and extracted knowledge is not exploitable for end-users. Thus, powerful tools designed for this kind of data are needed. On the other hand, existing fuzzy approaches hardly take gradual notions into account, or are not scalable enougth to tackle the problem.\n In this paper, we thus propose a heuristic in order to extract tendencies, in the form of gradual association rules. A gradual rule can be read as \"The more X and the less Y, then the more V and the less W\". Instead of using fuzzy sets, we apply our method directly on valued data and we propose an efficient heuristic, thus reducing combinatorial complexity and scalability. Experiments on synthetic datasets show the interest of our method.","PeriodicalId":309453,"journal":{"name":"International Conference on Soft Computing as Transdisciplinary Science and Technology","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Soft Computing as Transdisciplinary Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1456223.1456268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

Even if they have proven to be relevant on traditional transactional databases, data mining tools are still inefficient on some kinds of databases. In particular, databases containing discrete values or having a value for each item, like gene expression data, are especially challenging. On such data, existing approaches either transform the data to classical binary attributes, or use discretisation, including fuzzy partition to deal with the data. However, binary mapping of such databases drives to a loss of information and extracted knowledge is not exploitable for end-users. Thus, powerful tools designed for this kind of data are needed. On the other hand, existing fuzzy approaches hardly take gradual notions into account, or are not scalable enougth to tackle the problem. In this paper, we thus propose a heuristic in order to extract tendencies, in the form of gradual association rules. A gradual rule can be read as "The more X and the less Y, then the more V and the less W". Instead of using fuzzy sets, we apply our method directly on valued data and we propose an efficient heuristic, thus reducing combinatorial complexity and scalability. Experiments on synthetic datasets show the interest of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
渐进关联规则的快速提取:一种基于启发式的方法
即使它们已被证明与传统事务性数据库相关,数据挖掘工具在某些类型的数据库上仍然效率低下。特别是,包含离散值或每个项目都有一个值的数据库(如基因表达数据)尤其具有挑战性。对于这些数据,现有的方法要么将数据转换为经典的二值属性,要么使用离散化,包括模糊划分来处理数据。然而,这种数据库的二进制映射导致信息和提取的知识的丢失,最终用户无法利用。因此,需要为这类数据设计强大的工具。另一方面,现有的模糊方法几乎没有考虑渐进概念,或者没有足够的可扩展性来解决问题。因此,在本文中,我们提出了一种启发式方法,以渐进关联规则的形式提取趋势。渐进式规则可以理解为“X越多,Y越少,V越多,W越少”。我们不使用模糊集,而是直接将我们的方法应用于有值数据,并提出了一种有效的启发式方法,从而降低了组合的复杂性和可扩展性。在合成数据集上的实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel cache management strategy for semantic caching in mobile environment Evolutionary multiobjective optimization and multiobjective fuzzy system design Network security simulation and evaluation A software based approach for autonomous projectile attitude and position estimation Fatigue level estimation of bill based on feature-selected acoustic energy pattern by using supervised SOM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1