Distributed Fault Detection for A Class of Heterogeneous Agents with Internal Model Controllers

Wenhao Jia, Jinzhi Wang
{"title":"Distributed Fault Detection for A Class of Heterogeneous Agents with Internal Model Controllers","authors":"Wenhao Jia, Jinzhi Wang","doi":"10.23919/CCC50068.2020.9189303","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate distributed fault detection (FD) problem for a group of heterogeneous agents with internal model controllers. In order to avoid utilizing solutions of complicated matrix equations in the fault detection (FD) module, we design a distributed internal model control law with a state estimator additionally, and design observers for the MAS closed-loop system formed by the designed control law to generate residuals to detect the faulty agent, where the observer feedback information just contains itself and its neighbors’ state and state estimate information, then the utilization of solutions of matrix equations is avoided. Finally, a numerical example is utilized to verify effectiveness of the proposed distributed FD scheme, where the faulty agent will be detected in time, and the designed control law will realize cooperative output regulation (COR) if no fault occurs.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9189303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate distributed fault detection (FD) problem for a group of heterogeneous agents with internal model controllers. In order to avoid utilizing solutions of complicated matrix equations in the fault detection (FD) module, we design a distributed internal model control law with a state estimator additionally, and design observers for the MAS closed-loop system formed by the designed control law to generate residuals to detect the faulty agent, where the observer feedback information just contains itself and its neighbors’ state and state estimate information, then the utilization of solutions of matrix equations is avoided. Finally, a numerical example is utilized to verify effectiveness of the proposed distributed FD scheme, where the faulty agent will be detected in time, and the designed control law will realize cooperative output regulation (COR) if no fault occurs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类具有内模控制器的异构智能体的分布式故障检测
本文研究了一类具有内模控制器的异构智能体的分布式故障检测问题。为了避免在故障检测(FD)模块中使用复杂矩阵方程的解,我们设计了一个带有状态估计器的分布式内模控制律,并为由所设计的控制律构成的MAS闭环系统设计观测器来产生残差以检测故障代理,其中观测器反馈信息仅包含自身及其邻居的状态和状态估计信息。这样就避免了对矩阵方程解的利用。最后,通过数值算例验证了所提出的分布式FD方案的有效性,该方案能够及时检测出故障agent,并且在所设计的控制律在不发生故障的情况下实现协同输出调节(COR)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Matrix-based Algorithm for the LS Design of Variable Fractional Delay FIR Filters with Constraints MPC Control and Simulation of a Mixed Recovery Dual Channel Closed-Loop Supply Chain with Lead Time Fractional-order ADRC framework for fractional-order parallel systems A Moving Target Tracking Control and Obstacle Avoidance of Quadrotor UAV Based on Sliding Mode Control Using Artificial Potential Field and RBF Neural Networks Finite-time Pinning Synchronization and Parameters Identification of Markovian Switching Complex Delayed Network with Stochastic Perturbations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1