Is EEG causal to fNIRs?

Borzou Alipourfard, Jean X. Gao, Olajide Babawale, Hanli Liu
{"title":"Is EEG causal to fNIRs?","authors":"Borzou Alipourfard, Jean X. Gao, Olajide Babawale, Hanli Liu","doi":"10.1109/BIBM.2016.7822648","DOIUrl":null,"url":null,"abstract":"Causality analysis of simultaneous measurements of the brain's electrical activity and its hemodynamic activity provides the opportunity to study the neural underpinning of hemodynamic fluctuations. This multimodal analysis can also be used to extract valuable information regarding the location of the generators of various electrical events such as Alpha rhythms or epileptiform activity. To best of our knowledge, we are the first propose a method to assess causality from EEG to the hemodynamic activity measured using functional near-infrared spectroscopy (fNIRs). The main challenge in studying causality within this setting arises from the low sampling rate of the fNIRs and the mixed frequency nature of the data. Our method of analysis consists of two parts. Through a simple modification of Geweke's formulation of contamination, we first show that the low sampling frequency of the fNIRs does not cause contamination in estimating causality from EEG to fNIRs. We then apply a novel causality test to avoid the down-sampling of the EEG when measuring for causality. The method of analysis proposed here can be generalized to study causality in other biomedical signal analysis applications and mixed frequency settings.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Causality analysis of simultaneous measurements of the brain's electrical activity and its hemodynamic activity provides the opportunity to study the neural underpinning of hemodynamic fluctuations. This multimodal analysis can also be used to extract valuable information regarding the location of the generators of various electrical events such as Alpha rhythms or epileptiform activity. To best of our knowledge, we are the first propose a method to assess causality from EEG to the hemodynamic activity measured using functional near-infrared spectroscopy (fNIRs). The main challenge in studying causality within this setting arises from the low sampling rate of the fNIRs and the mixed frequency nature of the data. Our method of analysis consists of two parts. Through a simple modification of Geweke's formulation of contamination, we first show that the low sampling frequency of the fNIRs does not cause contamination in estimating causality from EEG to fNIRs. We then apply a novel causality test to avoid the down-sampling of the EEG when measuring for causality. The method of analysis proposed here can be generalized to study causality in other biomedical signal analysis applications and mixed frequency settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑电图与近红外光谱有因果关系吗?
同时测量脑电活动和血流动力学活动的因果关系分析为研究血流动力学波动的神经基础提供了机会。这种多模态分析也可用于提取有关各种电事件(如α节律或癫痫样活动)的发生器位置的有价值的信息。据我们所知,我们是第一个提出一种方法来评估从脑电图到使用功能近红外光谱(fNIRs)测量的血流动力学活性的因果关系。在这种情况下研究因果关系的主要挑战来自近红外光谱的低采样率和数据的混合频率性质。我们的分析方法由两部分组成。通过对Geweke的污染公式的简单修改,我们首先证明了低采样频率的近红外光谱在估计EEG到近红外光谱的因果关系时不会造成污染。然后,我们应用了一种新的因果关系检验,以避免在测量因果关系时脑电图的下采样。本文提出的分析方法可以推广到其他生物医学信号分析应用和混合频率设置中的因果关系研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of high performance, grid and cloud computing in high-throughput sequencing A novel algorithm for identifying essential proteins by integrating subcellular localization CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features Inferring Social Influence of anti-Tobacco mass media campaigns Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1