Computer-aided diagnosis of diabetes using least square support vector machine

Behnaz Naghash Almasi, O. N. Almasi, M. Kavousi, Amirhossein Sharifinia
{"title":"Computer-aided diagnosis of diabetes using least square support vector machine","authors":"Behnaz Naghash Almasi, O. N. Almasi, M. Kavousi, Amirhossein Sharifinia","doi":"10.14419/JACST.V2I2.1194","DOIUrl":null,"url":null,"abstract":"Diabetes incidence is one of the most serious health challenges in both industrial and developing countries; however, it is for sure that the early detection and accurate diagnosis of this disease can decrease the risk of affiliation to other relevant disease in diabetes patients. Because of the effective classification and high diagnostic capability, expert systems and machine learning techniques are now gaining popularity in this field. In this study, Least square support vector machine (LS-SVM) was used for diabetes diagnosis. The effectiveness of the LS-SVM is examined on Pima Indian diabetes dataset using k-fold cross validation method. Compared to thirteen well-known methods for the diabetes diagnosis in the literature, the study results showed the effectiveness of the proposed method.","PeriodicalId":445404,"journal":{"name":"Journal of Advanced Computer Science and Technology","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/JACST.V2I2.1194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Diabetes incidence is one of the most serious health challenges in both industrial and developing countries; however, it is for sure that the early detection and accurate diagnosis of this disease can decrease the risk of affiliation to other relevant disease in diabetes patients. Because of the effective classification and high diagnostic capability, expert systems and machine learning techniques are now gaining popularity in this field. In this study, Least square support vector machine (LS-SVM) was used for diabetes diagnosis. The effectiveness of the LS-SVM is examined on Pima Indian diabetes dataset using k-fold cross validation method. Compared to thirteen well-known methods for the diabetes diagnosis in the literature, the study results showed the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最小二乘支持向量机的糖尿病计算机辅助诊断
糖尿病发病率是工业化国家和发展中国家最严重的健康挑战之一;然而,可以肯定的是,早期发现和准确诊断本病可以降低糖尿病患者合并其他相关疾病的风险。由于有效的分类和高诊断能力,专家系统和机器学习技术在这一领域越来越受欢迎。本研究将最小二乘支持向量机(LS-SVM)用于糖尿病诊断。采用k-fold交叉验证方法在皮马印第安人糖尿病数据集上检验LS-SVM的有效性。与文献中已知的13种糖尿病诊断方法进行比较,研究结果表明了本文方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the performance of machine learning algorithms for network intrusion detection systems in the internet of things infrastructure Geometric Approach to Optimal Path Problem with Uncertain Arc Lengths Statistical adjustment of the parameters of multi-objective optimization problems with design expert method Circular Gabor wavelet algorithm for fingerprint liveness detection Numerical analysis of transcritical carbon dioxide compression cycle: a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1