Combining K-means and particle swarm optimization for dynamic data clustering problems

Yucheng Kao, Szu-Yuan Lee
{"title":"Combining K-means and particle swarm optimization for dynamic data clustering problems","authors":"Yucheng Kao, Szu-Yuan Lee","doi":"10.1109/ICICISYS.2009.5358020","DOIUrl":null,"url":null,"abstract":"This paper presents a new dynamic data clustering algorithm based on K-means and Combinatorial Particle Swarm Optimization, called KCPSO. Unlike the traditional K-means method, KCPSO does not need a specific number of clusters given before performing the clustering process and is able to find the optimal number of clusters during the clustering process. In each iteration of KCPSO, a discrete PSO is used to optimize the number of clusters with which the K-means is used to find the best clustering result. KCPSO has been developed into a software system and evaluated by testing some datasets. Encouraging results show that KCPSO is an effective algorithm for solving dynamic clustering problems.","PeriodicalId":206575,"journal":{"name":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2009.5358020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

This paper presents a new dynamic data clustering algorithm based on K-means and Combinatorial Particle Swarm Optimization, called KCPSO. Unlike the traditional K-means method, KCPSO does not need a specific number of clusters given before performing the clustering process and is able to find the optimal number of clusters during the clustering process. In each iteration of KCPSO, a discrete PSO is used to optimize the number of clusters with which the K-means is used to find the best clustering result. KCPSO has been developed into a software system and evaluated by testing some datasets. Encouraging results show that KCPSO is an effective algorithm for solving dynamic clustering problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合k -均值和粒子群算法求解动态数据聚类问题
提出了一种基于k均值和组合粒子群算法的动态数据聚类算法KCPSO。与传统的K-means方法不同,KCPSO在进行聚类过程之前不需要给定特定的聚类数量,而是能够在聚类过程中找到最优的聚类数量。在KCPSO的每次迭代中,使用离散PSO来优化聚类的数量,并使用K-means来找到最佳聚类结果。KCPSO已开发成一个软件系统,并通过测试一些数据集进行了评估。令人鼓舞的结果表明,KCPSO是解决动态聚类问题的有效算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic algorithm for the one-commodity pickup-and-delivery vehicle routing problem An intelligent model selection scheme based on particle swarm optimization A novel blind watermark algorithm based On SVD and DCT Optimization of machining parameters using estimation of distribution algorithms Optimal control analysis on a class of hybrid systems with impulses and switches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1