Detection of Cyberbullying Using Machine Learning and Deep Learning Algorithms

A. G, D. Uma
{"title":"Detection of Cyberbullying Using Machine Learning and Deep Learning Algorithms","authors":"A. G, D. Uma","doi":"10.1109/ASIANCON55314.2022.9908898","DOIUrl":null,"url":null,"abstract":"Use of digital technologies lead to the development of cyberbullying and social media has become a major source for it compared to mobile phones, platforms such as gaming and messaging. Cyberbullying can take several forms that includes sexual remarks, threats, hate mails and posting false things about someone which can be seen and read by millions of people. Compared to traditional bullying, cyberbullying has a longer lasting effect on the victim which can affect them physically or emotionally or mentally or in all the forms. Number of suicides due to cyberbullying has increased in recent years and India is one among the four countries that has more number of cases in cyberbullying. Prevention of cyberbullying has become manda-tory in universities and schools due to rising cases since 2015. This paper aims to detect cyberbullying comments automatically using Machine learning and Deep learning techniques. Metrics such as accuracy, precision, recall and F1-score used to evaluate the model performance. It is found that Gated Recurrent Unit, a deep learning technique outperformed all the other techniques which are considered in this paper with an accuracy of 95.47%.","PeriodicalId":429704,"journal":{"name":"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASIANCON55314.2022.9908898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Use of digital technologies lead to the development of cyberbullying and social media has become a major source for it compared to mobile phones, platforms such as gaming and messaging. Cyberbullying can take several forms that includes sexual remarks, threats, hate mails and posting false things about someone which can be seen and read by millions of people. Compared to traditional bullying, cyberbullying has a longer lasting effect on the victim which can affect them physically or emotionally or mentally or in all the forms. Number of suicides due to cyberbullying has increased in recent years and India is one among the four countries that has more number of cases in cyberbullying. Prevention of cyberbullying has become manda-tory in universities and schools due to rising cases since 2015. This paper aims to detect cyberbullying comments automatically using Machine learning and Deep learning techniques. Metrics such as accuracy, precision, recall and F1-score used to evaluate the model performance. It is found that Gated Recurrent Unit, a deep learning technique outperformed all the other techniques which are considered in this paper with an accuracy of 95.47%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习和深度学习算法检测网络欺凌
数字技术的使用导致网络欺凌的发展,与手机、游戏和短信等平台相比,社交媒体已成为网络欺凌的主要来源。网络欺凌可以采取多种形式,包括性言论、威胁、仇恨邮件和发布关于某人的虚假信息,这些信息可以被数百万人看到和阅读。与传统欺凌相比,网络欺凌对受害者的影响更持久,可能会对他们的身体、情感或精神或所有形式产生影响。近年来,网络欺凌导致的自杀人数有所增加,印度是网络欺凌案件数量较多的四个国家之一。自2015年以来,由于网络欺凌案件不断上升,预防网络欺凌已成为大学和学校的必修课。本文旨在使用机器学习和深度学习技术自动检测网络欺凌评论。准确度、精密度、召回率和f1分数等指标用于评估模型的性能。研究发现,门控循环单元是一种深度学习技术,其准确率为95.47%,优于本文所考虑的所有其他技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distributed Multi-Sensor DCNN & Multivariate Time Series Classification Based technique for Earthquake early warning Cross Technology Communication between LTE-U and Wi-Fi to Improve Overall QoS of 5G System Prediction of Ayurvedic Herbs for Specific Diseases by Classification Techniques in Machine Learning Face Mask Detection Using Machine Learning Techniques Closed-form BER Expressions of QPSK Modulation over NOMA-PNC Parallel Relay Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1