Information-Based Model Discrimination for Digital Twin Behavioral Matching

J. Viola, Y. Chen, Junchang Wang
{"title":"Information-Based Model Discrimination for Digital Twin Behavioral Matching","authors":"J. Viola, Y. Chen, Junchang Wang","doi":"10.1109/IAI50351.2020.9262239","DOIUrl":null,"url":null,"abstract":"Digital Twin allows creating virtual representations of complex physical systems. However, making the Digital Twin behavior matching with the real system is challenging due to the number of unknown parameters. Its search can be done using optimization-based techniques, producing a family of models based on different system datasets. So, a discrimination criterion is required to determine the best Digital Twin model. This paper presents an information theory-based discrimination criterion to determine the best Digital Twin model resulting from a behavioral matching process. The Information Gain of a model is employed as a discrimination criterion. Box-Jenkins models are used to define the family of models for each behavioral matching result. The proposed method is compared with other information-based metrics and the $\\nu$gap metric. As a study case, the discrimination method is applied to the Digital Twin for a real-time vision feedback infrared temperature uniformity control system. Obtained results show that information-based methodologies are useful for selecting an accurate Digital Twin model representing the system among a family of plants.","PeriodicalId":137183,"journal":{"name":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI50351.2020.9262239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Digital Twin allows creating virtual representations of complex physical systems. However, making the Digital Twin behavior matching with the real system is challenging due to the number of unknown parameters. Its search can be done using optimization-based techniques, producing a family of models based on different system datasets. So, a discrimination criterion is required to determine the best Digital Twin model. This paper presents an information theory-based discrimination criterion to determine the best Digital Twin model resulting from a behavioral matching process. The Information Gain of a model is employed as a discrimination criterion. Box-Jenkins models are used to define the family of models for each behavioral matching result. The proposed method is compared with other information-based metrics and the $\nu$gap metric. As a study case, the discrimination method is applied to the Digital Twin for a real-time vision feedback infrared temperature uniformity control system. Obtained results show that information-based methodologies are useful for selecting an accurate Digital Twin model representing the system among a family of plants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息的数字孪生行为匹配模型判别
Digital Twin允许创建复杂物理系统的虚拟表示。然而,由于存在大量未知参数,使数字孪生模型的行为与实际系统相匹配是一项挑战。它的搜索可以使用基于优化的技术来完成,生成一系列基于不同系统数据集的模型。因此,需要一个判别标准来确定最佳的数字孪生模型。本文提出了一种基于信息论的判别准则,用以确定行为匹配过程中产生的最佳数字孪生模型。采用模型的信息增益作为判别准则。Box-Jenkins模型用于定义每个行为匹配结果的模型族。将该方法与其他基于信息的度量和$\nu$差距度量进行了比较。作为研究实例,将该判别方法应用于实时视觉反馈红外温度均匀性控制系统的数字孪生。得到的结果表明,基于信息的方法对于选择一个精确的数字孪生模型来表示植物家族中的系统是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phasmatodea population evolution algorithm and its application in length-changeable incremental extreme learning machine An Intelligent Fault Classification Method Based on Data-Driven Stability Margin Real-time Wind Estimation with a Quadrotor using BP Neural Network Hybrid Neural Network Based on GRU with Uncertain Factors for Forecasting Ultra-short-term Wind Power Research on the mechanism and network model of China's public cultural service in the Internet Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1