{"title":"Transversals, duality, and irrational rotation","authors":"Anna Duwenig, Heath Emerson","doi":"10.1090/btran/54","DOIUrl":null,"url":null,"abstract":"<p>An early result of Noncommutative Geometry was Connes’ observation in the 1980’s that the Dirac-Dolbeault cycle for the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-torus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper T squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {T}^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, which induces a Poincaré self-duality for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper T squared\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">T</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {T}^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, can be ‘quantized’ to give a spectral triple and a K-homology class in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper K normal upper K Subscript 0 Baseline left-parenthesis upper A Subscript theta Baseline circled-times upper A Subscript theta Baseline comma double-struck upper C right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">K</mml:mi>\n <mml:mi mathvariant=\"normal\">K</mml:mi>\n </mml:mrow>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:msub>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {KK}_0(A_\\theta \\otimes A_\\theta , \\mathbb {C})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> providing the co-unit for a Poincaré self-duality for the irrational rotation algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript theta\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">A_\\theta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for any <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"theta element-of double-struck upper R minus double-struck upper Q\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>θ<!-- θ --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mo class=\"MJX-variant\">∖<!-- ∖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\theta \\in \\mathbb {R}\\setminus \\mathbb {Q}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Connes’ proof, however, relied on a K-theory computation and does not supply a representative cycle for the unit of this duality. Since such representatives are vital in applications of duality, we supply such a cycle in unbounded form in this article. Our approach is to construct, for any non-zero integer <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b\">\n <mml:semantics>\n <mml:mi>b</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">b</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, a finitely generated projective module <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper L Subscript b\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">L</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {L}_{b}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript theta Baseline circled-times upper A Subscript theta\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:msub>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">A_\\theta \\otimes A_\\theta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> by using a reduction-to-a-transversal argument of Muhly, Renault, and Williams, applied to a pair of Kronecker foliations along lines of slope <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"theta\">\n <mml:semantics>\n <mml:mi>θ<!-- θ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\theta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"theta plus b\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>θ<!-- θ --></mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>b</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\theta + b</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, using the fact that these flows are transverse to each other. We then compute Connes’ dual of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket script upper L Subscript b Baseline right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">L</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[\\mathcal {L}_{b}]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and prove that we obtain an invertible <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau Subscript b Baseline element-of normal upper K normal upper K Subscript 0 Baseline left-parenthesis upper A Subscript theta Baseline comma upper A Subscript theta Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>b</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">K</mml:mi>\n <mml:mi mathvariant=\"normal\">K</mml:mi>\n </mml:mrow>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mi>θ<!-- θ --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\tau _{b}\\in \\mathrm {KK}_0(A_\\theta , A_\\theta )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, represented by an equivariant bundle of Dirac-Schrödinger operators. An application of equivariant Bott Periodicity gives a form of higher index theorem describing functoriality of such ‘<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b\">\n <mml:semantics>\n <mml:mi>b</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">b</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-twists’ and this allows us to describe the unit of Connes’ duality in terms of a combination of two constructions in KK-theory. This results in an explicit spectral representative of the unit – a kind of ‘quantized Thom class’ for the diagonal embedding of the noncommutative torus.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
An early result of Noncommutative Geometry was Connes’ observation in the 1980’s that the Dirac-Dolbeault cycle for the 22-torus T2\mathbb {T}^2, which induces a Poincaré self-duality for T2\mathbb {T}^2, can be ‘quantized’ to give a spectral triple and a K-homology class in KK0(Aθ⊗Aθ,C)\mathrm {KK}_0(A_\theta \otimes A_\theta , \mathbb {C}) providing the co-unit for a Poincaré self-duality for the irrational rotation algebra AθA_\theta for any θ∈R∖Q\theta \in \mathbb {R}\setminus \mathbb {Q}. Connes’ proof, however, relied on a K-theory computation and does not supply a representative cycle for the unit of this duality. Since such representatives are vital in applications of duality, we supply such a cycle in unbounded form in this article. Our approach is to construct, for any non-zero integer bb, a finitely generated projective module Lb\mathcal {L}_{b} over Aθ⊗AθA_\theta \otimes A_\theta by using a reduction-to-a-transversal argument of Muhly, Renault, and Williams, applied to a pair of Kronecker foliations along lines of slope θ\theta and θ+b\theta + b, using the fact that these flows are transverse to each other. We then compute Connes’ dual of [Lb][\mathcal {L}_{b}] and prove that we obtain an invertible τb∈KK0(Aθ,Aθ)\tau _{b}\in \mathrm {KK}_0(A_\theta , A_\theta ), represented by an equivariant bundle of Dirac-Schrödinger operators. An application of equivariant Bott Periodicity gives a form of higher index theorem describing functoriality of such ‘bb-twists’ and this allows us to describe the unit of Connes’ duality in terms of a combination of two constructions in KK-theory. This results in an explicit spectral representative of the unit – a kind of ‘quantized Thom class’ for the diagonal embedding of the noncommutative torus.