Spatio-temporal cuboid pyramid for action recognition using depth motion sequences

Xiaopeng Ji, Jun Cheng, Wei Feng
{"title":"Spatio-temporal cuboid pyramid for action recognition using depth motion sequences","authors":"Xiaopeng Ji, Jun Cheng, Wei Feng","doi":"10.1109/ICACI.2016.7449827","DOIUrl":null,"url":null,"abstract":"In this paper, we present an effective method to recognize human actions from sequences of depth maps, which are captured by a consume depth sensor. In our approach, we first project each frame of a depth sequence onto three orthogonal planes and generate the depth motion sequence (DMS) between two consecutive frames from the three projected views. Then we propose a spatio-temporal cuboid pyramid (STCP) to subdivide the DMS volumes into a set of spatial cuboids on scaled temporal levels. And a cuboid fusion scheme is presented to concatenate the histograms of oriented gradients (HOG) features extracted from the spatial cuboid. The proposed approach is evaluated on three public benchmark datasets, i.e., MSRAction3D, MSRGesture3D and MSRActionPairs dataset. The experimental results demonstrate that the proposed method achieves state-of-the-art performance.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we present an effective method to recognize human actions from sequences of depth maps, which are captured by a consume depth sensor. In our approach, we first project each frame of a depth sequence onto three orthogonal planes and generate the depth motion sequence (DMS) between two consecutive frames from the three projected views. Then we propose a spatio-temporal cuboid pyramid (STCP) to subdivide the DMS volumes into a set of spatial cuboids on scaled temporal levels. And a cuboid fusion scheme is presented to concatenate the histograms of oriented gradients (HOG) features extracted from the spatial cuboid. The proposed approach is evaluated on three public benchmark datasets, i.e., MSRAction3D, MSRGesture3D and MSRActionPairs dataset. The experimental results demonstrate that the proposed method achieves state-of-the-art performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度运动序列的时空长方体金字塔动作识别
在本文中,我们提出了一种有效的方法,从深度传感器捕获的深度图序列中识别人类行为。在我们的方法中,我们首先将深度序列的每一帧投影到三个正交的平面上,并从三个投影视图中生成两个连续帧之间的深度运动序列(DMS)。然后,我们提出了一个时空长方体金字塔(STCP),将DMS体积在时间尺度上细分为一组空间长方体。提出了一种长方体融合方案,将从空间长方体中提取的定向梯度直方图(HOG)特征进行拼接。该方法在MSRAction3D、MSRGesture3D和MSRActionPairs三个公共基准数据集上进行了评估。实验结果表明,该方法达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Short term traffic flow prediction based on on-line sequential extreme learning machine Computational intelligent color normalization for wheat plant images to support precision farming A new time-dependent algorithm for post enrolment-based course timetabling problem Semi-automatic construction of thyroid cancer intervention corpus from biomedical abstracts Improvement of spatial data clustering algorithm in city location
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1