Modified CSA-CIA for Reducing Propagation Delay

Shubham Sarkar, Sujan Sarkar, Jishan Mehedi
{"title":"Modified CSA-CIA for Reducing Propagation Delay","authors":"Shubham Sarkar, Sujan Sarkar, Jishan Mehedi","doi":"10.1109/ICCCI.2018.8441482","DOIUrl":null,"url":null,"abstract":"An adder is a fundamental component of various Very Large-Scale Integration (VLSI) circuits like Central Processing Unit (CPU), Arithmetic Logic Unit (ALU), Memory Access Unit (MAU) etc. A various number of operations can be achieved by adders such as addition, subtraction, multiplication, division, exponentiation etc. The basic circuit of the adder is designed using logic gates. The demand for high-performance VLSI systems are increasing rapidly for use in small and portable devices. The speed related to operation depends upon the delay of the adder as it happens to be one of the most fundamental components of all the computing units and it is a very important parameter for high performance. There have been so many research works on reducing the delay associated with the adder. In this paper, we have done a comparative study of Carry Save Adder (CSA) and Carry Increment Adder (CIA) and proposed a hybrid adder circuit to decrease the delay associated with the adder to an optimum level. As CIA has favorable performance regarding propagation delay and CSA also happens to have good performance in higher bit operations. A simulation study has been carried out for comparative study, the coding has been done using Verilog hardware description language (HDL) and the simulation has been realized with the help of Xilinx ISE 14.7 environment. The result shows the effectiveness of the hybrid circuit proposed for propagation delay improvement.","PeriodicalId":141663,"journal":{"name":"2018 International Conference on Computer Communication and Informatics (ICCCI)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Computer Communication and Informatics (ICCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCI.2018.8441482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An adder is a fundamental component of various Very Large-Scale Integration (VLSI) circuits like Central Processing Unit (CPU), Arithmetic Logic Unit (ALU), Memory Access Unit (MAU) etc. A various number of operations can be achieved by adders such as addition, subtraction, multiplication, division, exponentiation etc. The basic circuit of the adder is designed using logic gates. The demand for high-performance VLSI systems are increasing rapidly for use in small and portable devices. The speed related to operation depends upon the delay of the adder as it happens to be one of the most fundamental components of all the computing units and it is a very important parameter for high performance. There have been so many research works on reducing the delay associated with the adder. In this paper, we have done a comparative study of Carry Save Adder (CSA) and Carry Increment Adder (CIA) and proposed a hybrid adder circuit to decrease the delay associated with the adder to an optimum level. As CIA has favorable performance regarding propagation delay and CSA also happens to have good performance in higher bit operations. A simulation study has been carried out for comparative study, the coding has been done using Verilog hardware description language (HDL) and the simulation has been realized with the help of Xilinx ISE 14.7 environment. The result shows the effectiveness of the hybrid circuit proposed for propagation delay improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进CSA-CIA,减少传播延迟
加法器是各种超大规模集成电路(VLSI)的基本组件,如中央处理器(CPU)、算术逻辑单元(ALU)、内存访问单元(MAU)等。加法器可以实现各种各样的运算,如加、减、乘、除、取幂等。加法器的基本电路采用逻辑门设计。用于小型和便携式设备的高性能VLSI系统的需求正在迅速增加。与运算相关的速度取决于加法器的延迟,因为它恰好是所有计算单元中最基本的组件之一,它是高性能的一个非常重要的参数。关于如何减少加法器的延迟,已经有很多研究工作。本文对进位保存加法器(CSA)和进位增量加法器(CIA)进行了比较研究,提出了一种混合加法器电路,将加法器相关的延迟降低到最佳水平。由于CIA在传输延迟方面具有良好的性能,而CSA在高比特运算方面也具有良好的性能。采用Verilog硬件描述语言(HDL)进行编码,并在Xilinx ISE 14.7环境下实现仿真。实验结果表明,所提出的混合电路在改善传输延迟方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Critical review of machine learning approaches to apply big data analytics in DDoS forensics Detection of the effect of exercise on APG signals Categorisation of security threats for smart home appliances Rotation-based LTE downlink resource scheduling using queue status monitoring Design and Analysis of Booth Multiplier with Optimised Power Delay Product
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1