GPU-accelerated, gradient-free MI deformable registration for atlas-based MR brain image segmentation

Xiao Han, L. Hibbard, V. Willcut
{"title":"GPU-accelerated, gradient-free MI deformable registration for atlas-based MR brain image segmentation","authors":"Xiao Han, L. Hibbard, V. Willcut","doi":"10.1109/CVPRW.2009.5204043","DOIUrl":null,"url":null,"abstract":"Brain structure segmentation is an important task in many neuroscience and clinical applications. In this paper, we introduce a novel MI-based dense deformable registration method and apply it to the automatic segmentation of detailed brain structures. Together with a multiple atlas fusion strategy, very accurate segmentation results were obtained, as compared with other reported methods in the literature. To make multi-atlas segmentation computationally feasible, we also propose to take advantage of the recent advancements in GPU technology and introduce a GPU-based implementation of the proposed registration method. With GPU acceleration it takes less than 8 minutes to compile a multi-atlas segmentation for each subject even with as many as 17 atlases, which demonstrates that the use of GPUs can greatly facilitate the application of such atlas-based segmentation methods in practice.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Brain structure segmentation is an important task in many neuroscience and clinical applications. In this paper, we introduce a novel MI-based dense deformable registration method and apply it to the automatic segmentation of detailed brain structures. Together with a multiple atlas fusion strategy, very accurate segmentation results were obtained, as compared with other reported methods in the literature. To make multi-atlas segmentation computationally feasible, we also propose to take advantage of the recent advancements in GPU technology and introduce a GPU-based implementation of the proposed registration method. With GPU acceleration it takes less than 8 minutes to compile a multi-atlas segmentation for each subject even with as many as 17 atlases, which demonstrates that the use of GPUs can greatly facilitate the application of such atlas-based segmentation methods in practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于阿特拉斯的磁共振脑图像分割的gpu加速,无梯度MI可变形配准
脑结构分割是许多神经科学和临床应用中的重要任务。本文提出了一种新颖的基于mi的密集形变配准方法,并将其应用于脑结构细节的自动分割。与文献中报道的其他方法相比,结合多图谱融合策略,获得了非常准确的分割结果。为了使多图谱分割在计算上可行,我们还建议利用GPU技术的最新进展,并引入基于GPU的实现所提出的配准方法。在GPU加速的情况下,即使多达17个地图集,也可以在不到8分钟的时间内编译出每个主题的多地图集分割,这表明使用GPU可以极大地促进这种基于地图集的分割方法在实践中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1