Accelerating radiation dose calculation: A multi-FPGA solution

Bo Zhou, X. Hu, D. Chen, Cedric X. Yu
{"title":"Accelerating radiation dose calculation: A multi-FPGA solution","authors":"Bo Zhou, X. Hu, D. Chen, Cedric X. Yu","doi":"10.1145/2536747.2536755","DOIUrl":null,"url":null,"abstract":"Remarkable progress has been made in the past few decades in various aspects of radiation therapy (RT). However, some of these promising technologies, such as image-guided online replanning and arc therapy, rely heavily on the availability of fast dose calculation. In this article, based on a popular dose calculation algorithm, the Collapsed-Cone Convolution/Superposition (CCCS) algorithm, we present a multi-FPGA accelerator to speed up radiation dose calculation. Our performance-driven design strategy yields a fully pipelined architecture, which includes a resource-economic raytracing engine and high-performance energy deposition pipeline. An evaluation based on a set of clinical treatment planning cases confirms that our FPGA design almost fully utilizes the available external memory bandwidth and achieves close to the best possible performance for the CCCS algorithm while using less resource. Compared with an existing FPGA design which aimed to accelerate the identical algorithm, the proposed design achieved 1.9X speedup by providing better memory bandwidth utilization (81.7% v.s. 43% of the available external memory bandwidth), higher working frequency (90MHz v.s. 70MHz) and less logic resource usage (25K v.s. 55K logic cells). Furthermore, it obtains a speedup of 20X over a commercial multithreaded software on a quad-core system and 15X performance improvement over closely related results. In terms of accuracy, the measured less than 1% statistical fluctuation indicates that our solution is practical in real medical scenarios.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2536747.2536755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Remarkable progress has been made in the past few decades in various aspects of radiation therapy (RT). However, some of these promising technologies, such as image-guided online replanning and arc therapy, rely heavily on the availability of fast dose calculation. In this article, based on a popular dose calculation algorithm, the Collapsed-Cone Convolution/Superposition (CCCS) algorithm, we present a multi-FPGA accelerator to speed up radiation dose calculation. Our performance-driven design strategy yields a fully pipelined architecture, which includes a resource-economic raytracing engine and high-performance energy deposition pipeline. An evaluation based on a set of clinical treatment planning cases confirms that our FPGA design almost fully utilizes the available external memory bandwidth and achieves close to the best possible performance for the CCCS algorithm while using less resource. Compared with an existing FPGA design which aimed to accelerate the identical algorithm, the proposed design achieved 1.9X speedup by providing better memory bandwidth utilization (81.7% v.s. 43% of the available external memory bandwidth), higher working frequency (90MHz v.s. 70MHz) and less logic resource usage (25K v.s. 55K logic cells). Furthermore, it obtains a speedup of 20X over a commercial multithreaded software on a quad-core system and 15X performance improvement over closely related results. In terms of accuracy, the measured less than 1% statistical fluctuation indicates that our solution is practical in real medical scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加速辐射剂量计算:一个多fpga解决方案
在过去的几十年里,放射治疗在各个方面都取得了显著的进展。然而,其中一些有前途的技术,如图像引导的在线重新规划和弧线治疗,严重依赖于快速剂量计算的可用性。本文基于一种流行的剂量计算算法——坍缩锥卷积/叠加(CCCS)算法,设计了一种多fpga加速器来加速辐射剂量的计算。我们的性能驱动设计策略产生了一个完全流水线的架构,其中包括资源经济的光线追踪引擎和高性能的能量沉积管道。基于一组临床治疗计划案例的评估证实,我们的FPGA设计几乎充分利用了可用的外部存储带宽,并且在使用较少资源的情况下实现了接近CCCS算法的最佳性能。与现有旨在加速相同算法的FPGA设计相比,该设计通过提供更好的内存带宽利用率(81.7% vs . 43%的可用外部内存带宽)、更高的工作频率(90MHz vs . 70MHz)和更少的逻辑资源使用(25K vs . 55K逻辑单元),实现了1.9倍的加速。此外,它比四核系统上的商业多线程软件的速度提高了20倍,比密切相关的结果提高了15倍的性能。在准确性方面,测量到的小于1%的统计波动表明我们的解决方案在实际医疗场景中是实用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Acceleration for Embedded Keyword Spotting: Tutorial and Survey Adaptive Computation Reuse for Energy-Efficient Training of Deep Neural Networks Horizontal Auto-Scaling for Multi-Access Edge Computing Using Safe Reinforcement Learning IoT-Fog-Cloud Centric Earthquake Monitoring and Prediction Horizontal Side-Channel Vulnerabilities of Post-Quantum Key Exchange and Encapsulation Protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1