{"title":"Rank growth of elliptic curves over 𝑁-th root extensions","authors":"A. Shnidman, Ariel Weiss","doi":"10.1090/btran/149","DOIUrl":null,"url":null,"abstract":"<p>Fix an elliptic curve <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over a number field <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and an integer <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which is a power of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We study the growth of the Mordell–Weil rank of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> after base change to the fields <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Subscript d Baseline equals upper F left-parenthesis RootIndex 2 n StartRoot d EndRoot right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>K</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:mi>F</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mspace width=\"negativethinmathspace\" />\n <mml:mroot>\n <mml:mi>d</mml:mi>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:mroot>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">K_d = F(\\!\\sqrt [2n]{d})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. If <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> admits a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-isogeny, then we show that the average “new rank” of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Subscript d\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>K</mml:mi>\n <mml:mi>d</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">K_d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, appropriately defined, is bounded as the height of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> goes to infinity. When <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n = 3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we moreover show that for many elliptic curves <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E slash double-struck upper Q\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>E</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">E/\\mathbb {Q}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, there are no new points on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis RootIndex 6 StartRoot d EndRoot right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mroot>\n <mml:mi>d</mml:mi>\n <mml:mn>6</mml:mn>\n </mml:mroot>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}(\\sqrt [6]d)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, for a positive proportion of integers <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This is a horizontal analogue of a well-known result of Cornut and Vatsal [<italic>Nontriviality of Rankin-Selberg L-functions and CM points, L</italic>-functions and Galois representations, vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 121–186]. As a corollary, we show that Hilbert’s tenth problem has a negative solution over a positive proportion of pure sextic fields <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis RootIndex 6 StartRoot d EndRoot right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mroot>\n <mml:mi>d</mml:mi>\n <mml:mn>6</mml:mn>\n </mml:mroot>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}(\\sqrt [6]{d})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>The proofs combine our recent work on ranks of abelian varieties in cyclotomic twist families with a technique we call the “correlation trick”, which applies in a more general context where one is trying to show simultaneous vanishing of multiple Selmer groups. We also apply this technique to families of twists of Prym surfaces, which leads to bounds on the number of rational points in sextic twist families of bielliptic genus 3 curves.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Fix an elliptic curve EE over a number field FF and an integer nn which is a power of 33. We study the growth of the Mordell–Weil rank of EE after base change to the fields Kd=F(d2n)K_d = F(\!\sqrt [2n]{d}). If EE admits a 33-isogeny, then we show that the average “new rank” of EE over KdK_d, appropriately defined, is bounded as the height of dd goes to infinity. When n=3n = 3, we moreover show that for many elliptic curves E/QE/\mathbb {Q}, there are no new points on EE over Q(d6)\mathbb {Q}(\sqrt [6]d), for a positive proportion of integers dd. This is a horizontal analogue of a well-known result of Cornut and Vatsal [Nontriviality of Rankin-Selberg L-functions and CM points, L-functions and Galois representations, vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 121–186]. As a corollary, we show that Hilbert’s tenth problem has a negative solution over a positive proportion of pure sextic fields Q(d6)\mathbb {Q}(\sqrt [6]{d}).
The proofs combine our recent work on ranks of abelian varieties in cyclotomic twist families with a technique we call the “correlation trick”, which applies in a more general context where one is trying to show simultaneous vanishing of multiple Selmer groups. We also apply this technique to families of twists of Prym surfaces, which leads to bounds on the number of rational points in sextic twist families of bielliptic genus 3 curves.