{"title":"A modular construction of unramified 𝑝-extensions of ℚ(ℕ^{1/𝕡})","authors":"Jaclyn Lang, Preston Wake","doi":"10.1090/bproc/141","DOIUrl":null,"url":null,"abstract":"<p>We show that for primes <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N comma p greater-than-or-equal-to 5\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>N</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>5</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">N, p \\geq 5</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N identical-to negative 1 mod p\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>N</mml:mi>\n <mml:mo>≡<!-- ≡ --></mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo lspace=\"thickmathspace\" rspace=\"thickmathspace\">mod</mml:mo>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">N \\equiv -1 \\bmod p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the class number of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis upper N Superscript 1 slash p Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>N</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}(N^{1/p})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is divisible by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N identical-to negative 1 mod p\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>N</mml:mi>\n <mml:mo>≡<!-- ≡ --></mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo lspace=\"thickmathspace\" rspace=\"thickmathspace\">mod</mml:mo>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">N \\equiv -1 \\bmod p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, there is always a cusp form of weight <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and level <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma 0 left-parenthesis upper N squared right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>N</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma _0(N^2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> whose <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\">\n <mml:semantics>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>th Fourier coefficient is congruent to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l plus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ell + 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> modulo a prime above <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, for all primes <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\">\n <mml:semantics>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We use the Galois representation of such a cusp form to explicitly construct an unramified degree-<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> extension of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis upper N Superscript 1 slash p Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>N</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}(N^{1/p})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show that for primes N,p≥5N, p \geq 5 with N≡−1modpN \equiv -1 \bmod p, the class number of Q(N1/p)\mathbb {Q}(N^{1/p}) is divisible by pp. Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when N≡−1modpN \equiv -1 \bmod p, there is always a cusp form of weight 22 and level Γ0(N2)\Gamma _0(N^2) whose ℓ\ellth Fourier coefficient is congruent to ℓ+1\ell + 1 modulo a prime above pp, for all primes ℓ\ell. We use the Galois representation of such a cusp form to explicitly construct an unramified degree-pp extension of Q(N1/p)\mathbb {Q}(N^{1/p}).