Multi-group Adaptation for Event Recognition from Videos

Yang Feng, Xinxiao Wu, Han Wang, Jing Liu
{"title":"Multi-group Adaptation for Event Recognition from Videos","authors":"Yang Feng, Xinxiao Wu, Han Wang, Jing Liu","doi":"10.1109/ICPR.2014.671","DOIUrl":null,"url":null,"abstract":"Recognizing events in consumer videos is becoming increasingly important because of the enormous growth of consumer videos in recent years. Current researches mainly focus on learning from numerous labeled videos, which is time consuming and labor expensive due to labeling the consumer videos. To alleviate the labeling process, we utilize a large number of loosely labeled Web videos (e.g., from YouTube) for visual event recognition in consumer videos. Web videos are noisy and diverse, so brute force transfer of Web videos to consumer videos may hurt the performance. To address such a negative transfer problem, we propose a novel Multi-Group Adaptation (MGA) framework to divide the training Web videos into several semantic groups and seek the optimal weight of each group. Each weight represents how relative the corresponding group is to the consumer domain. The final classifier for event recognition is learned using the weighted combination of classifiers learned from Web videos and enforced to be smooth on the consumer domain. Comprehensive experiments on three real-world consumer video datasets demonstrate the effectiveness of MGA for event recognition in consumer videos.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Recognizing events in consumer videos is becoming increasingly important because of the enormous growth of consumer videos in recent years. Current researches mainly focus on learning from numerous labeled videos, which is time consuming and labor expensive due to labeling the consumer videos. To alleviate the labeling process, we utilize a large number of loosely labeled Web videos (e.g., from YouTube) for visual event recognition in consumer videos. Web videos are noisy and diverse, so brute force transfer of Web videos to consumer videos may hurt the performance. To address such a negative transfer problem, we propose a novel Multi-Group Adaptation (MGA) framework to divide the training Web videos into several semantic groups and seek the optimal weight of each group. Each weight represents how relative the corresponding group is to the consumer domain. The final classifier for event recognition is learned using the weighted combination of classifiers learned from Web videos and enforced to be smooth on the consumer domain. Comprehensive experiments on three real-world consumer video datasets demonstrate the effectiveness of MGA for event recognition in consumer videos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多组自适应的视频事件识别
由于近年来消费视频的巨大增长,识别消费视频中的事件变得越来越重要。目前的研究主要集中在对大量标注过的视频进行学习,由于需要对消费者视频进行标注,既耗时又费力。为了减轻标记过程,我们利用大量松散标记的网络视频(例如,来自YouTube)来识别消费者视频中的视觉事件。网络视频噪声大、种类多,将网络视频强行传输到消费者视频可能会影响性能。为了解决这种负迁移问题,我们提出了一种新的多组自适应(MGA)框架,将训练网络视频划分为多个语义组,并寻求每个组的最优权值。每个权重表示相应的群体与消费者领域的相对程度。事件识别的最终分类器是使用从Web视频中学习到的分类器的加权组合来学习的,并强制在消费者领域上保持平滑。在三个真实消费者视频数据集上的综合实验证明了MGA对消费者视频事件识别的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Tracking via Deformable Structure Regression Learning Traffic Camera Anomaly Detection Velocity-Based Multiple Change-Point Inference for Unsupervised Segmentation of Human Movement Behavior Volume Reconstruction for MRI Anomaly Detection through Spatio-temporal Context Modeling in Crowded Scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1