Regularity: generalizing inheritance to arbitrary hierarchies

H. Mili, R. Rada
{"title":"Regularity: generalizing inheritance to arbitrary hierarchies","authors":"H. Mili, R. Rada","doi":"10.1109/TAI.1990.130410","DOIUrl":null,"url":null,"abstract":"Regularity is formalized from the general observation that hierarchical relationships between concepts reflect relationships between the concepts' properties, and vice-versa. A procedure called expansion is utilized to compute property values when those are not known, based on the patterns of regularity. Inheriting property values in taxonomies is a special case of expansion. Expansion may fail in tangled hierarchies in the same way that multiple inheritance may lead to conflicting inferences in taxonomies. The definition of regularity and the expansion procedure have been extended to fuzzy sets. The fuzzy sets framework takes into account the normative nature of property values and handles cases where expansion fails. A procedure parametrically enlarges sets of property values so that expansion does not fail. A theorem describes the effect of the choice of the enlargement parameter on the reliability of expansion. Applications of regularity and expansion to the building and maintenance of hierarchies are discussed.<<ETX>>","PeriodicalId":366276,"journal":{"name":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1990.130410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Regularity is formalized from the general observation that hierarchical relationships between concepts reflect relationships between the concepts' properties, and vice-versa. A procedure called expansion is utilized to compute property values when those are not known, based on the patterns of regularity. Inheriting property values in taxonomies is a special case of expansion. Expansion may fail in tangled hierarchies in the same way that multiple inheritance may lead to conflicting inferences in taxonomies. The definition of regularity and the expansion procedure have been extended to fuzzy sets. The fuzzy sets framework takes into account the normative nature of property values and handles cases where expansion fails. A procedure parametrically enlarges sets of property values so that expansion does not fail. A theorem describes the effect of the choice of the enlargement parameter on the reliability of expansion. Applications of regularity and expansion to the building and maintenance of hierarchies are discussed.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
规律性:将继承一般化到任意层次结构
规则是从概念之间的层次关系反映概念属性之间的关系的一般观察中形式化的,反之亦然。在不知道属性值的情况下,基于规则模式,使用一个称为展开的过程来计算属性值。继承分类法中的属性值是扩展的一种特殊情况。在复杂的层次结构中,扩展可能会失败,就像多重继承可能导致分类法中相互冲突的推断一样。将正则性的定义及其展开方法推广到模糊集。模糊集框架考虑了属性值的规范性,并处理了扩展失败的情况。一个过程参数化地扩大属性值集,使扩展不会失败。一个定理描述了扩展参数的选择对扩展可靠性的影响。讨论了正则性和可拓性在层次结构的建立和维护中的应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning steppingstones for problem solving Conventional and associative memory-based spelling checkers Relationships in an object knowledge representation model A tool for building decision-support-oriented expert systems Generation of feature detectors for texture discrimination by genetic search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1