LVQ Approach Using AA Indices for Protein Subcellular Localisation Prediction

Kok-Sin Toh, M. N. Nguyen, Jagath Rajapakse
{"title":"LVQ Approach Using AA Indices for Protein Subcellular Localisation Prediction","authors":"Kok-Sin Toh, M. N. Nguyen, Jagath Rajapakse","doi":"10.1109/CIBCB.2005.1594932","DOIUrl":null,"url":null,"abstract":"Knowledge of subcellular localisation of proteins is important in determining their function and involvement in different pathways. A wide variety of methods has been proposed over the recent years in order to predict the subcellular localisation of proteins, mainly based on amino acid composition or single sequence inputs. We propose a Learning Vector Quantization (LVQ) method for protein subcellular localisation prediction based on N-terminal sorting signals by using the information derived from Amino Acid (AA) index database. The LVQ approach achieved overall prediction accuracies of 84.7% for 2427 eukaryotic protein sequences on Reinhardt and Hubbard dataset and upto 86.8% on the non-plant (eukaryotes) dataset of 2738 sequences from the TargetP website, which are comparable or better than the results of existing prediction methods.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Knowledge of subcellular localisation of proteins is important in determining their function and involvement in different pathways. A wide variety of methods has been proposed over the recent years in order to predict the subcellular localisation of proteins, mainly based on amino acid composition or single sequence inputs. We propose a Learning Vector Quantization (LVQ) method for protein subcellular localisation prediction based on N-terminal sorting signals by using the information derived from Amino Acid (AA) index database. The LVQ approach achieved overall prediction accuracies of 84.7% for 2427 eukaryotic protein sequences on Reinhardt and Hubbard dataset and upto 86.8% on the non-plant (eukaryotes) dataset of 2738 sequences from the TargetP website, which are comparable or better than the results of existing prediction methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用AA指数进行蛋白亚细胞定位预测的LVQ方法
了解蛋白质的亚细胞定位对于确定它们的功能和参与不同的途径是重要的。近年来,为了预测蛋白质的亚细胞定位,提出了各种各样的方法,主要基于氨基酸组成或单序列输入。利用氨基酸(AA)索引数据库的信息,提出了一种基于n端排序信号的蛋白质亚细胞定位预测学习向量量化(LVQ)方法。LVQ方法对Reinhardt and Hubbard数据集上2427条真核蛋白序列的总体预测准确率为84.7%,对TargetP网站上2738条非植物(真核生物)数据集的总体预测准确率高达86.8%,与现有预测方法的结果相当或更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Internet-based Melanoma Diagnostic System - Toward the Practical Application - Network Motifs, Feedback Loops and the Dynamics of Genetic Regulatory Networks Multicategory Classification using Extended SVM-RFE and Markov Blanket on SELDI-TOF Mass Spectrometry Data Improving Protein Secondary-Structure Prediction by Predicting Ends of Secondary-Structure Segments Preliminary Results for GAMI: A Genetic Algorithms Approach to Motif Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1