Decision support using machine learning: Towards intensive care unit patient state characterization

Daniel Calvelo, M. Chambrin, D. Pomorski, C. Vilhelm
{"title":"Decision support using machine learning: Towards intensive care unit patient state characterization","authors":"Daniel Calvelo, M. Chambrin, D. Pomorski, C. Vilhelm","doi":"10.23919/ECC.1999.7099593","DOIUrl":null,"url":null,"abstract":"We present a framework for the study of real-world time-series data using supervised Machine Learning techniques. This methodology has been developed to suit the needs of data monitoring in Intensive Care Unit, where data are highly heterogeneous. It is based on the windowed processing and monitoring of model characteristics, in order to detect changes in the model. These changes are considered to reflect the underlying systems' state transitions. We apply this framework after specializing it, based on field knowledge and ex-post corroborated assumptions.","PeriodicalId":117668,"journal":{"name":"1999 European Control Conference (ECC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.1999.7099593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a framework for the study of real-world time-series data using supervised Machine Learning techniques. This methodology has been developed to suit the needs of data monitoring in Intensive Care Unit, where data are highly heterogeneous. It is based on the windowed processing and monitoring of model characteristics, in order to detect changes in the model. These changes are considered to reflect the underlying systems' state transitions. We apply this framework after specializing it, based on field knowledge and ex-post corroborated assumptions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习的决策支持:对重症监护病房患者状态的表征
我们提出了一个使用监督机器学习技术研究现实世界时间序列数据的框架。这种方法是为了适应重症监护病房数据监测的需要而开发的,重症监护病房的数据是高度异构的。它是基于对模型特征的窗口处理和监测,以检测模型的变化。这些变化被认为反映了底层系统的状态转换。我们根据现场知识和事后证实的假设,在专业化之后应用这个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A non-conservative approach to set membership identification for control Approximating uncertainty representations using the v-GAP metric Fault-tolerant control of a ship propulsion system using model predictive control Closed-loop identification using canonical correlation analysis Subspace-based identification of MIMO bilinear systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1