Explainable Deep Learning Methodologies for Biomedical Images Classification

Marcello Di Giammarco, F. Mercaldo, Fabio Martinelli, A. Santone
{"title":"Explainable Deep Learning Methodologies for Biomedical Images Classification","authors":"Marcello Di Giammarco, F. Mercaldo, Fabio Martinelli, A. Santone","doi":"10.1109/ICDCS54860.2022.00125","DOIUrl":null,"url":null,"abstract":"Often when we have a lot of data available we can not give them an interpretability and an explainability such as to be able to extract answers, and even more so diagnosis in the medical field. The aim of this contribution is to introduce a way to provide explainability to data and features that could escape even medical doctors, and that with the use of Machine Learning models can be categorized and \"explained\".","PeriodicalId":225883,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS54860.2022.00125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Often when we have a lot of data available we can not give them an interpretability and an explainability such as to be able to extract answers, and even more so diagnosis in the medical field. The aim of this contribution is to introduce a way to provide explainability to data and features that could escape even medical doctors, and that with the use of Machine Learning models can be categorized and "explained".
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学图像分类的可解释深度学习方法
通常,当我们有很多可用的数据时,我们不能给它们一个可解释性和可解释性,例如能够提取答案,甚至在医学领域的诊断。这一贡献的目的是引入一种方法,为甚至连医生都无法解释的数据和特征提供可解释性,并且通过使用机器学习模型可以对其进行分类和“解释”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nezha: Exploiting Concurrency for Transaction Processing in DAG-based Blockchains Toward Cleansing Backdoored Neural Networks in Federated Learning Themis: An Equal, Unpredictable, and Scalable Consensus for Consortium Blockchain IoDSCF: A Store-Carry-Forward Routing Protocol for joint Bus Networks and Internet of Drones FlowValve: Packet Scheduling Offloaded on NP-based SmartNICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1