A. Ridwan, Atik Charisma, M. R. Hidayat, E. Taryana, A. Munir
{"title":"Implementation of planar inverted-F structure for wireless charging radiator","authors":"A. Ridwan, Atik Charisma, M. R. Hidayat, E. Taryana, A. Munir","doi":"10.1109/ICWT.2017.8284146","DOIUrl":null,"url":null,"abstract":"This paper presents the design of radiator for wireless charging application using meandering form technique of spiral shape. The proposed wireless charging radiator is designed on a 1.6mm thick FR4 epoxy dielectric substrate workable at the frequency of 13.5MHz. To improve the performance of radiator, the method of planar inverted-F structure is implemented by adding a short pin at the end of radiator. This method can enhance the value of S11 wherein simulation result of the radiator without planar inverted-F structure has S11 value of −13.27dB, while the radiator with planar inverted-F structure has S11 value of −37.73dB. Beside enhancing the value of S11, the use of planar inverted-F structure is reducible the overall size of radiator by cutting off the radiator strip up to 2.617m. Therefore, by implementing planar inverted-F structure the size of radiator is 240mm × 240mm with the length of radiator strip from the probe to the short pin as far as 5.993m.","PeriodicalId":273103,"journal":{"name":"2017 3rd International Conference on Wireless and Telematics (ICWT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Wireless and Telematics (ICWT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWT.2017.8284146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents the design of radiator for wireless charging application using meandering form technique of spiral shape. The proposed wireless charging radiator is designed on a 1.6mm thick FR4 epoxy dielectric substrate workable at the frequency of 13.5MHz. To improve the performance of radiator, the method of planar inverted-F structure is implemented by adding a short pin at the end of radiator. This method can enhance the value of S11 wherein simulation result of the radiator without planar inverted-F structure has S11 value of −13.27dB, while the radiator with planar inverted-F structure has S11 value of −37.73dB. Beside enhancing the value of S11, the use of planar inverted-F structure is reducible the overall size of radiator by cutting off the radiator strip up to 2.617m. Therefore, by implementing planar inverted-F structure the size of radiator is 240mm × 240mm with the length of radiator strip from the probe to the short pin as far as 5.993m.