Pairs Trading in Chinese Commodity Futures Markets: An Adaptive Cointegration Approach

Danni Chen, Jing Cui, Yan Gao, Leilei Wu
{"title":"Pairs Trading in Chinese Commodity Futures Markets: An Adaptive Cointegration Approach","authors":"Danni Chen, Jing Cui, Yan Gao, Leilei Wu","doi":"10.1111/acfi.12335","DOIUrl":null,"url":null,"abstract":"This study comprehensively examines pairs trading in Chinese commodity futures markets, which, although less researched, represents an important scenario for analysing commodity price behaviour. Based on a sample of daily future returns from 2006 to 2016, we propose a cointegration model that employs an adaptive learning process, and we show that our model yields an average annualised return of 26.94 percent before trading costs, using a closed‐loop strategy. Our results are robust to various tests, including parameter uncertainty, holding period constraints, trading period selection and trading costs.","PeriodicalId":306457,"journal":{"name":"ERN: Futures (Topic)","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Futures (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/acfi.12335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This study comprehensively examines pairs trading in Chinese commodity futures markets, which, although less researched, represents an important scenario for analysing commodity price behaviour. Based on a sample of daily future returns from 2006 to 2016, we propose a cointegration model that employs an adaptive learning process, and we show that our model yields an average annualised return of 26.94 percent before trading costs, using a closed‐loop strategy. Our results are robust to various tests, including parameter uncertainty, holding period constraints, trading period selection and trading costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国商品期货市场的配对交易:自适应协整方法
本研究全面考察了中国商品期货市场的配对交易,尽管研究较少,但它代表了分析商品价格行为的重要场景。基于2006年至2016年的每日未来回报样本,我们提出了一个采用自适应学习过程的协整模型,并且我们表明,我们的模型使用闭环策略,在交易成本之前的平均年化回报率为26.94%。我们的结果对包括参数不确定性、持有期约束、交易期选择和交易成本在内的各种测试具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stoptions: Representations and Applications The Impacts of Futures Introduction on Spot Market Volatility: Evidence from the Bitcoin Market Forward Backward Stochastic Model of Financial Asset Pricing with Idiosyncratic Noise Exploiting the Dynamics of Commodity Futures Curves The Four Seasons of Commodity Futures: Insights from Topological Data Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1