Self-Organized UWB Localization for Robotic Swarm – First Results from an Analogue Mission on Volcano Etna

Siwei Zhang, Pedro Fernandez Ruz, Fabio Broghammer, E. Staudinger, C. Gentner, R. Pöhlmann, A. Dammann, Manuel Schütt, R. Lichtenheldt
{"title":"Self-Organized UWB Localization for Robotic Swarm – First Results from an Analogue Mission on Volcano Etna","authors":"Siwei Zhang, Pedro Fernandez Ruz, Fabio Broghammer, E. Staudinger, C. Gentner, R. Pöhlmann, A. Dammann, Manuel Schütt, R. Lichtenheldt","doi":"10.1109/AERO55745.2023.10115558","DOIUrl":null,"url":null,"abstract":"At the Institute of Communications and Navigation of the German Aerospace Center (DLR), we have studied and developed radio-based swarm navigation technologies for a decade. In this paper, we provide a complete solution of ultra-wide band (UWB) localization network for a robotic swarm. This network is organized in a fully decentralized fashion and resilient to clock imperfections, topology changes, packet loss and the hidden node problem. In this network, a multitude of active devices and an arbitrary number of passive devices can exploit the UWB signals for self-localization, i.e. estimating their relative positions and orientations, without sophisticated clock and antenna calibration, which dramatically simplifies the de-sign and manufacturing of such a swarm. Our proposed solution is verified with experiments and was successfully demonstrated in a space-analogue multi-robot surface exploration mission on the volcano Mt. Etna, Sicily, Italy, in July 2022.","PeriodicalId":344285,"journal":{"name":"2023 IEEE Aerospace Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO55745.2023.10115558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

At the Institute of Communications and Navigation of the German Aerospace Center (DLR), we have studied and developed radio-based swarm navigation technologies for a decade. In this paper, we provide a complete solution of ultra-wide band (UWB) localization network for a robotic swarm. This network is organized in a fully decentralized fashion and resilient to clock imperfections, topology changes, packet loss and the hidden node problem. In this network, a multitude of active devices and an arbitrary number of passive devices can exploit the UWB signals for self-localization, i.e. estimating their relative positions and orientations, without sophisticated clock and antenna calibration, which dramatically simplifies the de-sign and manufacturing of such a swarm. Our proposed solution is verified with experiments and was successfully demonstrated in a space-analogue multi-robot surface exploration mission on the volcano Mt. Etna, Sicily, Italy, in July 2022.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人群的自组织超宽带定位——来自埃特纳火山模拟任务的初步结果
在德国航空航天中心(DLR)的通信和导航研究所,我们已经研究和开发了十年的基于无线电的群导航技术。本文给出了机器人群超宽带定位网络的完整解决方案。该网络以完全分散的方式组织,对时钟缺陷、拓扑变化、数据包丢失和隐藏节点问题具有弹性。在该网络中,大量有源设备和任意数量的无源设备可以利用超宽带信号进行自定位,即估计其相对位置和方向,而无需复杂的时钟和天线校准,这大大简化了此类蜂群的设计和制造。我们提出的解决方案已通过实验验证,并于2022年7月在意大利西西里岛埃特纳火山的空间模拟多机器人表面探测任务中成功验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Mission for Education and Multimedia Engagement: Breaking the Barriers to Satellite Education TID Testing of COTS-based, Two-Phase, Point-of-Load Converters for Aerospace Applications Point-Source Target Detection and Localization in Single-Frame Infrared Imagery Comparative Analysis of Different Profiles of Riblets on an Airfoil using Large Eddy Simulations A Receiver-Independent GNSS Smart Antenna for Simultaneous Jamming and Spoofing Protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1